Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Use case
While you're onboarding Snowflake data sources and designing policies, you don't want to disrupt your Snowflake users' existing workflows.
Instead, you want to gradually onboard Immuta through a series of successive changes that will not impact your existing Snowflake users.
A phased onboarding approach to configuring the Snowflake integration ensures that your users will not be immediately affected by changes as you add data sources and configure policies.
Several features allow you to gradually onboard data sources and policies in Immuta:
Subscription policy of “None” by default: By default, no policy is applied at registration time; instead of applying a restrictive policy immediately upon registration, the table is registered in Immuta and waits for a policy to be applied, if ever.
There are several benefits to this design:
All existing roles maintain access to the data and registration of the table or view with Immuta has zero impact on your data platform.
It gives you time to configure tags on the Immuta registered tables and views, either manually or through automatic means, such as Immuta’s sensitive data detection (SDD), or an external catalog integration to include Snowflake tags.
It gives you time to assess and validate the sensitive data tags that were applied.
You can build only row and column controls with Immuta and let your existing roles manage table access instead of using Immuta subscription policies for table access.
Snowflake table grants coupled with Snowflake low row access policy mode: With these features enabled, Immuta manages access to tables (subscription policies) through GRANTs. This works by assigning each user their own unique role created by Immuta and all table access is managed using that single role.
Without these two features enabled, Immuta uses a Snowflake row access policy (RAP) to manage table access. A RAP only allows users to access rows in the table if they were explicitly granted access through an Immuta subscription policy; otherwise, the user sees no rows. This behavior means all existing Snowflake roles lose access to the table contents until explicitly granted access through Immuta subscription policies. Essentially, roles outside of Immuta don't control access anymore.
By using table grants and the low row access policy mode, users and roles outside Immuta continue to work.
There are two benefits to this approach:
All pre-existing Snowflake roles retain access to the data until you explicitly revoke access (outside Immuta).
It provides a way to test that Immuta GRANTs are working without impacting production workloads.
The following configuration is required for phased Snowflake onboarding:
Impersonation is disabled
Project workspaces are disabled
If either user impersonation or project workspaces is necessary for your use case, you cannot do phased Snowflake onboarding as described below.
Configure your Snowflake integration with the following features enabled:
Snowflake table grants (enabled by default)
Snowflake low row access policy mode
Select None as your default subscription policy.
Plan the policies you need to have in place, the tags that will apply to your data, and how the tags will be applied to your data.
Register a subset of your tables to configure and validate SDD.
Configure SDD to discover entities of interest for your policy needs.
Validate that the SDD tags are applied correctly.
Register your remaining tables at the schema level with schema detection turned on. This setting allows Immuta to continuously monitor for schema changes (new tables, column, dropped tables, columns, changed column types).
Let SDD or external catalog synchronization complete, and then validate that SDD tags are applied correctly.
Further customize SDD as necessary.
At this point, no policies are in place because of the default subscription policy setting. Now you can write and apply the policies you planned. You do not have to do all policies at once.
In the steps below, you do not have to validate every policy you create in Immuta; instead, examine a few to validate the behavior you expect to see.
Subscription policies grant or revoke access to Snowflake tables.
If necessary, you could use your existing roles for table access and only use Immuta for row access policies and masking policies.
Immuta roles are created for users once they are subscribed to a table by a policy. SECONDARY ROLES ALL
allows you to combine warehouse access with the Immuta role.
Validate that the Immuta users impacted now have an Immuta role in Snowflake dedicated to them.
Validate that when acting under the Immuta role those users have access to the table(s) in question.
Validate that users without access in Immuta can still access the table with a different Snowflake role that has access.
Validate that a user with SECONDARY ROLES ALL
enabled retains access if
they were not granted access by Immuta and
they have a role that provides them access, even if they are not currently acting under that role.
Data policies enforce fine-grained access controls on a table (for example, row access policies or masking policies).
Validate that a user with a role that can access the table in question (whether it's an Immuta role or not) sees the impact of that data policy.
Once all Immuta policies are in place, remove or alter old roles.
Delete irrelevant roles instead of revoking access to avoid confusion.
Ensure deleting roles will not have other implications, like impacting warehouse access. If deleting those roles will have unintended effects alter those roles to remove the access control logic instead of deleting them.
Immuta is compatible with Snowflake Secure Data Sharing. Using both Immuta and Snowflake, organizations can share the policy-protected data of their Snowflake database with other Snowflake accounts with Immuta policies enforced in real time. This integration gives data consumers a live connection to the data and relieves data providers of the legal and technical burden of creating static data copies that leave their Snowflake environment.
There are two options to use Snowflake Data Sharing with Immuta:
Snowflake Data Shares with Immuta Users (Public Preview): This option utilizes Snowflake table grants and requires the data viewer to be registered as an Immuta user.
Snowflake Data Shares with Non-Immuta Users: This option utilizes Snowflake project workspaces to share policy-protected data without data viewers being registered as Immuta users.
This method allows data providers to share policy-enforced data with data consumers registered in Immuta.
The data consumer will register in Immuta as a user with the appropriate Immuta attributes and groups. Once that user has subscribed to the data source, they will be able to see the policy-protected data of a Snowflake data share.
For a tutorial on this workflow, see the Using Snowflake Data Sharing page.
Snowflake Enterprise Edition or higher
Immuta's table grants feature
Using Immuta users with Snowflake Data Sharing allows the sharer to
Only need limited knowledge of the context or goals of the existing policies in place: Because the sharer is not editing or creating policies to share their data, they only need a limited knowledge of how the policies work. Their main responsibility is making sure they properly represent the attributes of the data consumer.
Leave policies untouched.
In this method, Immuta projects can be used to protect and share data with data consumers, even without those users being registered in Immuta.
Using Immuta projects, organizations can create projects and then adjust the equalized entitlements of the project to represent attributes and groups of the data consumer. This allows the project to function as a user, with the data being protected for a particular set of attributes and groups. Once the entitlements have been set, the project owner can enable a project workspace that will create a Snowflake secure view of that policy-protected data that is ready to share with the data consumer. Because of the Immuta project, equalized entitlements, and workspace, the data is restricted to data consumers who possess the relevant attributes and groups.
For a tutorial on this workflow, see the Using Snowflake Data Sharing page.
Any Snowflake integration
Immuta attribute based access control (ABAC) data policies
Using Immuta project workspaces with Snowflake Data Sharing allows the sharer to
Only need limited knowledge of the context or goals of the existing policies in place: Because the sharer is not editing or creating policies to share their data, they only need a limited knowledge of how the policies work. Their main responsibility is making sure they properly represent the attributes of the data consumer.
Leave policies untouched.
Only share data that the sharer is allowed to see: Users who can create data shares shouldn’t necessarily be the same users who can make policy changes.
Let Immuta create the policy-enforced secure view, ready to share.
Project workspaces are generally recommended to allow WRITE access; however, Snowflake's Data Sharing feature does not support WRITE access to shared data.
Actions of the data consumer after the data has been shared are not audited when using project workspaces.
Use Case
While you're onboarding Snowflake data sources and designing policies, you don't want to disrupt your Snowflake users' existing workflows.
Instead, you want to gradually onboard Immuta through a series of successive changes that will not impact your existing Snowflake users.
A phased onboarding approach to configuring the Snowflake integration ensures that your users will not be immediately affected by changes as you add data sources and configure policies.
Several features allow you to gradually onboard data sources and policies in Immuta:
Subscription policy of “None” by default: By default, no policy is applied at registration time; instead of applying a restrictive policy immediately upon registration, the table is registered in Immuta and waits for a policy to be applied, if ever.
There are several benefits to this design:
All existing roles maintain access to the data and registration of the table or view with Immuta has zero impact on your data platform.
It gives you time to configure tags on the Immuta registered tables and views, either manually or through automatic means, such as Immuta’s sensitive data detection (SDD), or an external catalog integration to include Snowflake tags.
It gives you time to assess and validate the sensitive data tags that were applied.
You can build only row and column controls with Immuta and let your existing roles manage table access instead of using Immuta subscription policies for table access.
Snowflake table grants coupled with Snowflake low row access policy mode: With these features enabled, Immuta manages access to tables (subscription policies) through GRANTs. This works by assigning each user their own unique role created by Immuta and all table access is managed using that single role.
Without these two features enabled, Immuta uses a Snowflake row access policy (RAP) to manage table access. A RAP only allows users to access rows in the table if they were explicitly granted access through an Immuta subscription policy; otherwise, the user sees no rows. This behavior means all existing Snowflake roles lose access to the table contents until explicitly granted access through Immuta subscription policies. Essentially, roles outside of Immuta don't control access anymore.
By using table grants and the low row access policy mode, users and roles outside Immuta continue to work.
There are two benefits to this approach:
All pre-existing Snowflake roles retain access to the data until you explicitly revoke access (outside Immuta).
It provides a way to test that Immuta GRANTs are working without impacting production workloads.
The following configuration is required for phased Snowflake onboarding:
Impersonation is disabled
Project workspaces are disabled
If either of these capabilities is necessary for your use case, you cannot do phased Snowflake onboarding as described below.
See the Getting started page for step-by-step guidance to implement phased Snowflake onboarding.
In this legacy integration, all enforcement is done by creating views that contain all policy logic. Each view has a 1-to-1 relationship with the original table. All policy-enforced views are accessible through the PUBLIC
role and access controls are applied in the view, allowing customers to leverage Immuta's powerful set of attribute-based policies. Additionally, users can continue using roles to enforce compute-based policies through "warehouse" roles, without needing to grant each of those roles access to the underlying data or create multiple views of the data for each specific business unit.
This integration leverages webhooks to keep Snowflake views up-to-date with the corresponding Immuta data sources. Whenever a data source or policy is created, updated, or disabled, a webhook will be called that will create, modify, or delete the Snowflake view with Immuta policies.
The SQL that makes up all views includes a join to the secure view: immuta_system.user_profile
. This view is a select from the immuta_system.profile
table (which contains all Immuta users and their current groups, attributes, projects, and a list of valid tables they have access to) with a constraint immuta__userid = current_user()
to ensure it only contains the profile row for the current user. This secure view is readable by all users and will only display the data that corresponds to the user executing the query.
Note: The immuta_system.profile
table is updated through webhooks whenever a user's groups or attributes change, they switch projects, they acknowledge a purpose, or when their data source access is approved or revoked. The profile table can only be read and updated by the Immuta system account.
By default, all views are created within the immuta
database, which is accessible by the PUBLIC
role, so users acting under any Snowflake role can connect. All views within the database have the SELECT
permission granted to the PUBLIC
role as well, and access is enforced by the access_check
function built into the individual views. Consequently, there is no need for users to manage any role-based access to any of the database objects managed by Immuta.
When creating a Snowflake data source, users have the option to use a regular view (traditional database view) or a secure view; however, according to Snowflake's documentation , "the Snowflake query optimizer, when evaluating secure views, bypasses certain optimizations used for regular views. This may result in some impact on query performance for secure views." To use the data source with both Snowflake and Snowflake workspaces, secure views are necessary. Note: If HIPAA compliance is required, secure views must be used.
When using a non-secure view, certain policies may leak sensitive information. In addition to the concerns outlined here, there is also a risk of someone exploiting the query optimizer to discover that a row exists in a table that has been excluded by row-level policies. This attack is mentioned here in the Snowflake documentation.
Policies that will not leak sensitive information
Masking by making NULL, using a constant, or by rounding (date/numeric)
Minimization row-level policies
Date-based row-level policies
K-anonymization masking policies
Policies that could leak sensitive information
Masking using a regex will show the regex being applied. In general this should be safe, but if you have a regex policy that removes a specific selector to redact (e.g., a regex of /123-45-6789/g
to specifically remove a single SSN from a column), then someone would be able to identify columns with that value.
In conditional masking and custom WHERE clauses including “Right To Be Forgotten,” the custom SQL will be visible, so for a policy like "only show rows where COUNTRY NOT IN(‘UK’, ‘AUS’)," users will know that it’s possible there is data in that table containing those values.
Policies that will leak potentially sensitive information
These policies leak information sensitive to Immuta, but in most cases would require an attacker to reverse the algorithm. In general these policies should be used with secure views:
Masking using hashing will include the salt used.
Numeric and categorical randomized response will include the salt used.
Reversible masking will include both a key and an IV.
Format preserving masking will include a tweak, key, an alphabet range, prefix, pad to length, and checksum id if used.
The data sources themselves have all the Data policies included in the SQL through a series of CASE statements that determine which view of the data a user will see. Row-level policies are applied as top-level WHERE clauses, and usage policies (purpose-based or subscription-level) are applied as WHERE clauses against the user_profile
JOIN. The access_check
function allows Immuta to throw custom errors when a user lacks access to a data source because they are not subscribed to the data source, they are operating under the wrong project, or they cannot view any data because of policies enforced on the data source.
Migration troubleshooting
If multiple Snowflake integrations are enabled, they will all migrate together. If one fails, they will all revert to the Snowflake Standard integration.
If an error occurs during migration and the integration cannot be reverted, the integration must be disabled and re-enabled.
You can migrate from a Snowflake integration without governance features to a Snowflake integration with governance features on the app settings page. Once prompted, Immuta will migrate the integration, allowing users to seamlessly transition workloads from the legacy Immuta views to the direct Snowflake tables.
After the migration is complete, Immuta views will still exist for pre-existing Snowflake data sources to support existing workflows. However, disabling the Immuta data source will drop the Immuta view, and, if the data source is re-enabled, the view will not be recreated.
Certain interpolation functions can also block the creation of a view, specifically @interpolatedComparison()
and @iam
.
When configuring one Snowflake instance with multiple Immuta instances, the user or system account that enables the integration on the app settings page must be unique for each Immuta instance.
This section guides you through configuring your integrations. Once configuration is complete, data owners and governors can use tags to create policies.
Best practices for users, permissions, attributes, and tags
The best practices outlined below will also appear in callouts within relevant tutorials.
If sensitive data discovery has been enabled, then manually adding tags to columns in the data dictionary will be unnecessary in most cases. The data owner will need to verify that the Discovered tags are correct.
Turning on sensitive data discovery can improve your data's security with its automated tagging. Immuta highly recommends the use of this feature in tandem with vigilant verification of tags on all data sources.
Use an external IAM for authentication and Immuta's internal IAM to manage attributes.
Use the minimum number of tags possible to achieve the data privacy needed.
Start organizing attributes and groups in Immuta and transfer them to your IAM.
This section includes concept, reference, and how-to guides for configuring your integrations, connecting your IAM and external catalog, and enabling sensitive data discovery. Some of these guides are provided below. See the left navigation for a complete list of resources.
To edit or remove a Snowflake integration, you have two options:
Automatic: Grant Immuta one-time use of credentials to automatically edit or remove the integration.
The credentials provided must have the following permissions:
CREATE DATABASE ON ACCOUNT WITH GRANT OPTION
CREATE ROLE ON ACCOUNT WITH GRANT OPTION
CREATE USER ON ACCOUNT WITH GRANT OPTION
MANAGE GRANTS ON ACCOUNT WITH GRANT OPTION
Manual: Run the Immuta script in your Snowflake environment yourself to edit or remove the integration.
The specified role used to run the bootstrap needs to have the following privileges:
CREATE DATABASE ON ACCOUNT WITH GRANT OPTION
CREATE ROLE ON ACCOUNT WITH GRANT OPTION
CREATE USER ON ACCOUNT WITH GRANT OPTION
MANAGE GRANTS ON ACCOUNT WITH GRANT OPTION
APPLY MASKING POLICY ON ACCOUNT WITH GRANT OPTION
APPLY ROW ACCESS POLICY ON ACCOUNT WITH GRANT OPTION
Select one of the following options for editing your integration:
Automatic: Grant Immuta one-time use of credentials to automatically edit the integration.
Manual: Run the Immuta script in your Snowflake environment yourself to edit the integration.
Click the App Settings icon in the left sidebar.
Click the Integrations tab and click the down arrow next to the Snowflake integration.
Edit the field you want to change or check a checkbox of a feature you would like to enable. Note any field shadowed is not editable, and the integration must be disabled and re-installed to change it.
From the Select Authentication Method Dropdown, select either Username and Password or Key Pair Authentication:
Username and Password option: Complete the Username, Password, and Role fields.
Key Pair Authentication option:
Complete the Username field.
When using a private key, enter the private key file password in the Additional Connection String Options. Use the following format: PRIV_KEY_FILE_PWD=<your_pw>
Click Key Pair (Required), and upload a Snowflake key pair file.
Complete the Role field.
Click Save.
Click the App Settings icon in the left sidebar.
Click the Integrations tab and click the down arrow next to the Snowflake integration.
Edit the field you want to change or check a checkbox of a feature you would like to enable. Note any field shadowed is not editable, and the integration must be disabled and re-installed to change it.
Download the Edit Script and run it in Snowflake.
Click Save.
Select one of the following options for deleting your integration:
Automatic: Grant Immuta one-time use of credentials to automatically remove the integration and Immuta-managed resources from your Snowflake environment.
Manual: Run the Immuta script in your Snowflake environment yourself to remove Immuta-managed resources and policies from Snowflake.
Click the App Settings icon in the left sidebar.
Click the Integrations tab and click the down arrow next to the Snowflake integration.
Click the checkbox to disable the integration.
Enter the Username, Password, and Role that was entered when the integration was configured.
Click Validate Credentials.
Click Save.
Click the App Settings icon in the left sidebar.
Click the Integrations tab and click the down arrow next to the Snowflake integration.
Click the checkbox to disable the integration.
Download the Cleanup Script.
Click Save.
Run the cleanup script in Snowflake.
Navigate to the App Settings page.
Scroll to the Global Integration Settings section.
Ensure the Snowflake Governance Features checkbox is checked. It is enabled by default.
Ensure the Snowflake Table Grants checkbox is checked. It is enabled by default.
Opt to change the Role Prefix. Snowflake table grants creates a new Snowflake role for each Immuta user. To ensure these Snowflake role names do not collide with existing Snowflake roles, each Snowflake role created for Snowflake table grants requires a common prefix. When using multiple Immuta accounts within a single Snowflake account, the Snowflake table grants role prefix should be unique for each Immuta account. The prefix must adhere to Snowflake identifier requirements and be less than 50 characters. Once the configuration is saved, the prefix cannot be modified; however, the Snowflake table grants feature can be disabled and re-enabled to change the prefix.
Finish configuring your integration by following one of these guidelines:
New Snowflake integration: Set up a new Snowflake integration by following the configuration tutorial.
Existing Snowflake integration (automatic setup): You will be prompted to enter connection information for a Snowflake user. Immuta will execute the migration to Snowflake table grants using a connection established with this Snowflake user. The Snowflake user you provide here must have Snowflake privileges to run these privilege grants.
Existing Snowflake integration (manual setup): Immuta will display a link to a migration script you must run in Snowflake and a link to a rollback script for use in the event of a failed migration. Important: Execute the migration script in Snowflake before clicking Save on the app settings page.
Snowflake table grants private preview migration
To migrate from the private preview version of Snowflake table grants (available before September 2022) to the generally available version of Snowflake table grants, follow the steps in the migration guide.
Migration troubleshooting
If multiple Snowflake integrations are enabled, they will all migrate together. If one fails, they will all revert to the Snowflake Standard integration.
If an error occurs during migration and the integration cannot be reverted, the integration must be disabled and re-enabled.
Click the App Settings icon in the left sidebar.
Click Preview Features in the left panel.
Scroll to the Native Snowflake Governance Controls modal and check the checkbox.
Using the credentials entered to enable the Snowflake integration, fill out the Username and Password or Key Pair.
Click Save.
Click Confirm.
Snowflake Enterprise Edition required
This integration requires the Snowflake Enterprise Edition.
In this integration, Immuta manages access to Snowflake tables by administering Snowflake row access policies and column masking policies on those tables, allowing users to query tables directly in Snowflake while dynamic policies are enforced.
Like with all Immuta integrations, Immuta can inject its ABAC model into policy building and administration to remove policy management burden and significantly reduce role explosion.
When an administrator configures the Snowflake integration with Immuta, Immuta creates an IMMUTA
database and schemas (immuta_procedures
, immuta_policies
, and immuta_functions
) within Snowflake to contain policy definitions and user entitlements. Immuta then creates a system role and gives that system account the following privileges:
APPLY MASKING POLICY
APPLY ROW ACCESS POLICY
ALL PRIVILEGES ON DATABASE "IMMUTA" WITH GRANT OPTION
ALL PRIVILEGES ON ALL SCHEMAS IN DATABASE "IMMUTA" WITH GRANT OPTION
USAGE ON FUTURE PROCEDURES IN SCHEMA "IMMUTA".immuta_procedures WITH GRANT OPTION
USAGE ON WAREHOUSE
OWNERSHIP ON SCHEMA "IMMUTA".immuta_policies TO ROLE "IMMUTA_SYSTEM" COPY CURRENT GRANTS
OWNERSHIP ON SCHEMA "IMMUTA".immuta_procedures TO ROLE "IMMUTA_SYSTEM" COPY CURRENT GRANTS
OWNERSHIP ON SCHEMA "IMMUTA".immuta_functions TO ROLE "IMMUTA_SYSTEM" COPY CURRENT GRANTS
OWNERSHIP ON SCHEMA "IMMUTA".public TO ROLE "IMMUTA_SYSTEM" COPY CURRENT GRANTS
Optional features, like automatic object tagging, native query auditing, etc., require additional permissions to be granted to the Immuta system account, are listed in the supported features section.
Snowflake is a policy push integration with Immuta. When Immuta users create policies, they are then pushed into the Immuta database within Snowflake; there, the Immuta system account applies Snowflake row access policies and column masking policies directly onto Snowflake tables. Changes in Immuta policies, user attributes, or data sources trigger webhooks that keep the Snowflake policies up-to-date.
For a user to query Immuta-protected data, they must meet two qualifications:
They must be subscribed to the Immuta data source.
They must be granted SELECT
access on the table by the Snowflake object owner or automatically via the Snowflake table grants feature.
After a user has met these qualifications they can query Snowflake tables directly.
When a user applies a masking policy to a Snowflake data source, Immuta truncates masked values to align with Snowflake column length (VARCHAR(X)
types) and precision (NUMBER (X,Y)
types) requirements.
Consider these columns in a data source that have the following masking policies applied:
Column A (VARCHAR(6)): Mask using hashing for everyone
Column B (VARCHAR(5)): Mask using a constant REDACTED
for everyone
Column C (VARCHAR(6)): Mask by making null for everyone
Column D (NUMBER(3, 0)): Mask by rounding to the nearest 10 for everyone
Querying this data source in Snowflake would return the following values:
Hashing collisions
Hashing collisions are more likely to occur across or within Snowflake columns restricted to short lengths, since Immuta truncates the hashed value to the limit of the column. (Hashed values truncated to 5 characters have a higher risk of collision than hashed values truncated to 20 characters.) Therefore, avoid applying hashing policies to Snowflake columns with such restrictions.
For more details about Snowflake column length and precision requirements, see the Snowflake behavior change release documentation.
When a policy is applied to a column, Immuta uses Snowflake memoizable functions to cache the result of the called function. Then, when a user queries a column that has that policy applied to it, Immuta uses that cached result to dramatically improve query performance.
Best practice
Use a dedicated Snowflake role to register Snowflake tables as Immuta data sources. Then, include this role in the excepted roles/users list.
Register Snowflake data sources using a dedicated Snowflake role. No policies will apply to that role, ensuring that your integration works with the following use cases:
Snowflake project workspaces: Snowflake workspaces generate static views with the credentials used to register the table as an Immuta data source. Those tables must be registered in Immuta by an excepted role so that policies applied to the backing tables are not applied to the project workspace views.
Using views and tables within Immuta: Because this integration uses Snowflake governance policies, users can register tables and views as Immuta data sources. However, if you want to register views and apply different policies to them than their backing tables, the owner of the view must be an excepted role; otherwise, the backing table’s policies will be applied to that view.
Private preview
This feature is only available to select accounts. Reach out to your Immuta representative to enable this feature.
Bulk data source creation is the more efficient process when loading more than 5000 data sources from Snowflake and allows for data sources to be registered in Immuta before running sensitive data discovery or applying policies.
To use this feature, see the Bulk create Snowflake data sources guide.
Based on performance tests that create 100,000 data sources, the following minimum resource allocations need to be applied to the appropriate pods in your Kubernetes environment for successful bulk data source creation.
Performance gains are limited when enabling sensitive data discovery at the time of data source creation.
External catalog integrations are not recognized during bulk data source creation. Users must manually trigger a catalog sync for tags to appear on the data source through the data source's health check.
Excepted roles and users are assigned when the integration is installed, and no policies will apply to these users' queries, despite any Immuta policies enforced on the tables they are querying. Credentials used to register a data source in Immuta will be automatically added to this excepted list for that Snowflake table. Consequently, roles and users added to this list and used to register data sources in Immuta should be limited to service accounts.
Immuta excludes the listed roles and users from policies by wrapping all policies in a CASE statement that will check if a user is acting under one of the listed usernames or roles. If a user is, then the policy will not be acted on the queried table. If the user is not, then the policy will be executed like normal. Immuta does not distinguish between role and username, so if you have a role and user with the exact same name, both the user and any user acting under that role will have full access to the data sources and no policies will be enforced for them.
An Immuta application administrator configures the Snowflake integration and registers Snowflake warehouse and databases with Immuta.
Immuta creates a database inside the configured Snowflake warehouse that contains Immuta policy definitions and user entitlements.
A data owner registers Snowflake tables in Immuta as data sources.
If Snowflake tag ingestion was enabled during the configuration, Immuta uses the host provided in the configuration and ingests internal tags on Snowflake tables registered as Immuta data sources.
A data owner, data governor, or administrator creates or changes a policy or a user's attributes change in Immuta.
The Immuta web service calls a stored procedure that modifies the user entitlements or policies.
Immuta manages and applies Snowflake governance column and row access policies to Snowflake tables that are registered as Immuta data sources.
If Snowflake table grants is not enabled, Snowflake object owner or user with the global MANAGE GRANTS privilege grants SELECT privilege on relevant Snowflake tables to users. Note: Although they are GRANTed access, if they are not subscribed to the table via Immuta-authored policies, they will not see data.
A Snowflake user who is subscribed to the data source in Immuta queries the corresponding table directly in Snowflake and sees policy-enforced data.
The Snowflake integration supports the following authentication methods to install the integration and create data sources:
Username and password: Users can authenticate with their Snowflake username and password.
Key pair: Users can authenticate with a Snowflake key pair authentication.
Snowflake External OAuth: Users can authenticate with Snowflake External OAuth when using Snowflake with governance features.
Immuta's OAuth authentication method uses the Client Credentials Flow to integrate with Snowflake External OAuth. When a user configures the Snowflake integration or connects a Snowflake data source, Immuta uses the token credentials (obtained using a certificate or passing a client secret) to craft an authenticated access token to connect with Snowflake. This allows organizations that already use Snowflake External OAuth to use that secure authentication with Immuta.
An Immuta application administrator configures the Snowflake integration or creates a data source.
Immuta creates a custom token and sends it to the authorization server.
The authorization server confirms the information sent from Immuta and issues an access token to Immuta.
Immuta sends the access token it received from the authorization server to Snowflake.
Snowflake authenticates the token and grants access to the requested resources from Immuta.
The integration is connected and users can query data.
The Immuta Snowflake integration supports Snowflake external tables. However, you cannot add a masking policy to an external table column while creating the external table in Snowflake because masking policies cannot be attached to virtual columns.
The Snowflake integration with Snowflake governance features supports the Immuta features outlined below. Click the links provided for more details.
Immuta project workspaces: Users can have additional write access in their integration using project workspaces.
Tag ingestion: Immuta automatically ingests Snowflake object tags from your Snowflake instance and adds them to the appropriate data sources.
User impersonation: Native impersonation allows users to natively query data as another Immuta user. To enable native user impersonation, see the Integration user impersonation page.
Native query audit: Immuta audits queries run natively in Snowflake against Snowflake data registered as Immuta data sources.
Snowflake low row access policy mode: The Snowflake low row access policy mode improves query performance in Immuta's Snowflake integration by decreasing the number of Snowflake row access policies Immuta creates.
Snowflake table grants: This feature allows Immuta to manage privileges on your Snowflake tables and views according to the subscription policies on the corresponding Immuta data sources.
Immuta system account required Snowflake privileges
CREATE [OR REPLACE] PROCEDURE
DROP ROLE
REVOKE ROLE
Users can have additional write access in their integration using project workspaces. For more details, see the Snowflake project workspaces page.
To use project workspaces with the Snowflake integration with governance features, the default role of the account used to create data sources in the project must be added to the "Excepted Roles/Users List." If the role is not added, you will not be able to query the equalized view using the project role in Snowflake.
Immuta system account required Snowflake privileges
GRANT IMPORTED PRIVILEGES ON DATABASE snowflake
GRANT APPLY TAG ON ACCOUNT
When configuring a Snowflake integration, you can enable Snowflake tag ingestion as well. With this feature enabled, Immuta will automatically ingest Snowflake object tags from your Snowflake instance into Immuta and add them to the appropriate data sources.
The Snowflake tags' key and value pairs will be reflected in Immuta as two levels: the key will be the top level and the value the second. As Snowflake tags are hierarchical, Snowflake tags applied to a database will also be applied to all of the schemas in that database, all of the tables within those schemas, and all of the columns within those tables. For example: If a database is tagged PII
, all of the tables and columns in that database will also be tagged PII
.
To enable Snowflake tag ingestion, follow one of the tutorials below:
Manually enable Snowflake tag ingestion: This tutorial is intended for users who want Snowflake tags to be ingested into Immuta but do not want users to query data sources natively in Snowflake.
Automatically enable Snowflake tag ingestion: This tutorial illustrates how to enable Snowflake tag ingestion when configuring a Snowflake integration.
Snowflake has some natural data latency. If you manually refresh the governance page to see all tags created globally, users can experience a delay of up to two hours. However, if you run schema detection or a health check to find where those tags are applied, the delay will not occur because Immuta will only refresh tags for those specific tables.
Immuta system account required Snowflake privileges
IMPORTED PRIVILEGES ON DATABASE snowflake
Once this feature has been enabled with the Snowflake integration, Immuta will query Snowflake to retrieve user query histories. These histories provide audit records for queries against Snowflake data sources that are queried natively in Snowflake.
This process will happen automatically every hour by default but can be configured to a different frequency when configuring or editing the integration. Additionally, audit ingestion can be manually requested at any time from the Immuta audit page. When manually requested, it will only search for new queries that were created since the last native query that had been audited. The job is run in the background, so the new queries will not be immediately available.
For details about prompting these logs and the contents of these audit logs, see the Snowflake query audit logs page.
A user can configure multiple integrations of Snowflake to a single Immuta instance and use them dynamically or with workspaces.
There can only be one integration connection with Immuta per host.
The host of the data source must match the host of the integration for the view to be created.
Projects can only be configured to use one Snowflake host.
If there are errors in generating or applying policies natively in Snowflake, the data source will be locked and only users on the excepted roles/users list and the credentials used to create the data source will be able to access the data.
Once a Snowflake integration is disabled in Immuta, the user must remove the access that was granted in Snowflake. If that access is not revoked, users will be able to access the raw table in Snowflake.
Migration must be done using the credentials and credential method (automatic or bootstrap) used to install the integration.
When configuring one Snowflake instance with multiple Immuta instances, the user or system account that enables the integration on the app settings page must be unique for each Immuta instance.
A Snowflake table can only have one set of policies enforced at a given time, so creating multiple data sources pointing to the same table is not supported. If this is a use case you need to support, create views in Snowflake and expose those instead.
You cannot add a masking policy to an external table column while creating the external table because a masking policy cannot be attached to a virtual column.
If you create an Immuta data source from a Snowflake view created using a select * from
query, Immuta column detection will not work as expected because Snowflake views are not automatically updated based on backing table changes. To remedy this, you can create views that have the specific columns you want or you can CREATE AND REPLACE
the view in Snowflake whenever the backing table is updated and manually run the column detection job on the data source page.
If a user is created in Snowflake after that user is already registered in Immuta, Immuta does not grant usage on the per-user role automatically - meaning Immuta does not govern this user's access without manual intervention. If a Snowflake user is created after that user is registered in Immuta, the user account must be disabled and re-enabled to trigger a sync of Immuta policies to govern that user. Whenever possible, Snowflake users should be created before registering those users in Immuta.
Snowflake tables from imported databases are not supported. Instead, create a view of the table and register that view as a data source.
The Immuta Snowflake integration uses Snowflake governance features to let users query data natively in Snowflake. This means that Immuta also inherits some Snowflake limitations using correlated subqueries with row access policies and column-level security. These limitations appear when writing custom WHERE policies, but do not remove the utility of row-level policies.
All column names must be fully qualified:
Any column names that are unqualified (i.e., just the column name) will default to a column of the data source the policy is being applied to (if one matches the name).
The Immuta system account must have SELECT
privileges on all tables/views referenced in a subquery:
The Immuta system role name is specified by the user, and the role is created when the Snowflake instance is integrated.
Any subqueries that error in Snowflake will also error in Immuta.
Including one or more subqueries in the Immuta policy condition may cause errors in Snowflake. If an error occurs, it may happen during policy creation or at query-time. To avoid these errors, limit the number of subqueries, limit the number of JOIN operations, and simplify WHERE clause conditions.
For more information on the Snowflake subquery limitations see
Private preview
This feature is only available to select accounts. Reach out to your Immuta representative to enable this feature.
Snowflake column lineage specifies how data flows from source tables or columns to the target tables in write operations. When Snowflake lineage tag propagation is enabled in Immuta, Immuta automatically applies tags added to a Snowflake table to its descendant data source columns in Immuta so you can build policies using those tags to restrict access to sensitive data.
Snowflake Access History tracks user read and write operations. Snowflake column lineage extends this Access History to specify how data flows from source columns to the target columns in write operations, allowing data stewards to understand how sensitive data moves from ancestor tables to target tables so that they can
trace data back to its source to validate the integrity of dashboards and reports,
identify who performed write operations to meet compliance requirements,
evaluate data quality and pinpoint points of failure, and
tag sensitive data on source tables without having tag columns on their descendant tables.
However, tagging sensitive data doesn’t innately protect that data in Snowflake; users need Immuta to disseminate these lineage tags automatically to descendant tables registered in Immuta so data stewards can build policies using the semantic and business context captured by those tags to restrict access to sensitive data. When Snowflake lineage tag propagation is enabled, Immuta propagates tags applied to a data source to its descendant data source columns in Immuta, which keeps your data inventory in Immuta up-to-date and allows you to protect your data with policies without having to manually tag every new Snowflake data source you register in Immuta.
An application administrator enables the feature on the Immuta app settings page.
Snowflake lineage metadata (column names and tags) for the Snowflake tables is stored in the metadata database.
A data owner creates a new data source (or adds a new column to a Snowflake table) that initiates a job that applies all tags for each column from its ancestor columns.
A data owner or governor adds a tag to a column in Immuta that has descendants, which initiates a job that propagates the tag to all descendants.
An audit record is created that includes which tags were applied and from which columns those tags originated.
The Snowflake Account Usage ACCESS_HISTORY
view contains column lineage information.
To appropriately propagate tags to descendant data sources, Immuta fetches Access History metadata to determine what column tags have been updated, stores this metadata in the Immuta metadata database, and then applies those tags to relevant descendant columns of tables registered in Immuta.
Consider the following example using the Customer, Customer 2, and Customer 3 tables that were all registered in Immuta as data sources.
Customer: source table
Customer 2: descendant of Customer
Customer 3: descendant of Customer 2
If the Discovered.Electronic Mail Address
tag is added to the Customer data source in Immuta, that tag will propagate through lineage to the Customer 2 and Customer 3 data sources.
After an application administrator has enabled Snowflake lineage tag propagation, data owners can register data in Immuta and have tags in Snowflake propagated from ancestor tables to descendant data sources. Whenever new tags are added to those tables in Immuta, those upstream tags will propagate to descendant data sources.
By default all tags are propagated, but these tags can be filtered on the app settings page or using the Immuta API.
Lineage tag propagation works with any tag added to the data dictionary. Tags can be manually added, synced from an external catalog, or discovered by SDD. Consider the following example using the Customer, Customer 2, and Customer 3 tables that were all registered in Immuta as data sources.
Customer: source table
Customer 2: descendant of Customer
Customer 3: descendant of Customer 2
Immuta added the Discovered.Electronic Mail Address
tag to the Customer data source, and that tag propagated through lineage to the Customer 2 and Customer 3 data sources.
Removing the tag from the Customer 2 table soft deletes it from the Customer 2 data source. When a tag is deleted, downstream lineage tags are removed, unless another parent data source still has that tag. The tag remains visible, but it will not be re-added if a future propagation event specifies the same tag again. Immuta prevents you from removing Snowflake object tags from data sources. You can only remove Immuta-managed tags. To remove Snowflake object tags from tables, you must remove them in Snowflake.
However the Discovered.Electronic Mail Address
tag still applies to the Customer 3 data source because Customer still has the tag applied. The only way a tag will be removed from descendant data sources is if no other ancestor of the descendant still prescribes the tag.
If the Snowflake lineage tag propagation feature is disabled, tags will remain on Immuta data sources.
Sensitive data discovery will still run on data sources and can be manually triggered. Tags applied through sensitive data discovery will propagate as tags added through lineage to descendant Immuta data sources.
Immuta audit records include Snowflake lineage tag events when a tag is added or removed.
The example audit record below illustrates the SNOWFLAKE_TAGS.pii
tag successfully propagating from the Customer table to Customer 2:
Without tableFilter
set, Immuta will ingest lineage for every table on the Snowflake instance.
Tag propagation based on lineage is not retroactive. For example, if you add a table, add tags to that table, and then run the lineage ingestion job, tags will not get propagated. However, if you add a table, run the lineage ingestion job, and then add tags to the table, the tags will get propagated.
The native lineage job needs to pull in lineage data before any tag is applied in Immuta. When Immuta gets new lineage information from Snowflake, Immuta does not update existing tags in Immuta.
There can be up to a 3-hour delay in Snowflake for a lineage event to make it into the ACCESS_HISTORY
view.
Immuta does not ingest lineage information for views.
Snowflake only captures lineage events for CTAS
, CLONE
, MERGE
, and INSERT
write operations. Snowflake does not capture lineage events for DROP
, RENAME
, ADD
, or SWAP
. Instead of using these latter operations, you need to recreate a table with the same name if you need to make changes.
Immuta cannot enforce coherence of your Snowflake lineage. If a column, table, or schema in the middle of the lineage graph gets dropped, Immuta will not do anything unless a table with that same name gets recreated. This means a table that gets dropped but not recreated could live in Immuta’s system indefinitely.
Deprecation notice
Support for this integration has been deprecated.
This page details how to install the for users on Snowflake Standard. If you currently use Snowflake Enterprise, see the .
Snowflake resource names
Use uppercase for the names of the Snowflake resources you create below.
Click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click the +Add Native Integration button and select Snowflake from the dropdown menu.
Scroll down and uncheck the box for Snowflake Governance Features.
Scroll back up and complete the Host, Port, and Default Warehouse fields.
Opt to check the Enable Project Workspace box. This will allow for managed Write access within Snowflake.
Opt to check the Enable Impersonation box and customize the Impersonation Role name as needed. This will allow users to natively impersonate another user. Note you cannot edit this choice after you configure the integration.
is enabled by default; you can disable it by clicking the Enable Native Query Audit checkbox.
Configure the by scrolling to Integrations Settings and find the Snowflake Audit Sync Schedule section.
Enter how often, in hours, you want Immuta to ingest audit events from Snowflake as an integer between 1 and 24.
Continue with your integration configuration.
Opt to check the Automatically ingest Snowflake object tags box. This will enable Immuta to automatically import table and column tags from Snowflake. Note this feature requires an Enterprise Edition of Snowflake.
You have two options for installing the Snowflake and Snowflake Workspace access patterns: automatic or manual setup.
Known issue
To configure your Snowflake integration using password-only authentication in the automatic setup option, upgrade to Immuta v2024.2.7 or newer. Otherwise, Immuta will return an error.
Immuta requires temporary, one-time use of credentials with specific permissions.
When performing an automated installation, Immuta requires temporary, one-time use of credentials with the following permissions:
CREATE DATABASE ON ACCOUNT WITH GRANT OPTION
CREATE ROLE ON ACCOUNT WITH GRANT OPTION
CREATE USER ON ACCOUNT WITH GRANT OPTION
MANAGE GRANTS ON ACCOUNT
These permissions will be used to create and configure a new IMMUTA database within the specified Snowflake instance. The credentials are not stored or saved by Immuta, and Immuta doesn’t retain access to them after initial setup is complete.
You can create a new account for Immuta to use that has these permissions, or you can grant temporary use of a pre-existing account. By default, the pre-existing account with appropriate permissions is ACCOUNTADMIN. If you create a new account, it can be deleted after initial setup is complete.
Alternatively, you can create the IMMUTA database within the specified Snowflake instance manually using the Manual Setup option.
From the Select Authentication Method Dropdown, select either Username and Password or Key Pair Authentication:
Username and Password: Fill out the Username, Password, and Role fields.
Key Pair Authentication:
Complete the Username field.
When using a private key, enter the private key file password in the Additional Connection String Options. Use the following format: PRIV_KEY_FILE_PWD=<your_pw>
Click Key Pair (Required), and upload a Snowflake key pair file.
Complete the Role field.
Best Practices: Account Creation
The account you create for Immuta should only be used for the integration and should NOT be used as the credentials when creating data sources within Immuta. This will cause issues.
Create a dedicated READ-ONLY account for creating and registering data sources within Immuta. This account should also not be the account used to configure the integration.
The specified role used to run the bootstrap needs to have the following privileges:
CREATE DATABASE ON ACCOUNT WITH GRANT OPTION
CREATE ROLE ON ACCOUNT WITH GRANT OPTION
CREATE USER ON ACCOUNT WITH GRANT OPTION
MANAGE GRANTS ON ACCOUNT
Warning: Different Accounts
Download and run the bootstrap script linked in the Setup section. Take note of the username and password used in the script.
Use the Dropdown Menu to select your Authentication Method:
Username and Password: Enter the Username and Password that were that were set in the bootstrap script for the Immuta System Account Credentials.
Key Pair Authentication: Upload the Key Pair file and when using a private key, enter the private key file password in the Additional Connection String Options. Use the following format: PRIV_KEY_FILE_PWD=<your_pw>
If you enabled a Snowflake workspace, select Warehouses from the dropdown menu that will be available to project owners when creating native Snowflake workspaces. Select from a list of all the warehouses available to the privileged account entered above. Note that any warehouse accessible by the PUBLIC role does not need to be explicitly added.
Click Test Snowflake Connection.
Once the credentials are successfully tested, click Save.
Now that Snowflake has been enabled, all future Snowflake data sources will also be created natively within the immuta
database of the linked Snowflake instance. In addition to creating views, Immuta will also periodically sync user metadata to a system table within the Snowflake instance.
Immuta is compatible with . Using both Immuta and Snowflake, organizations can share the policy-protected data of their Snowflake database with other Snowflake accounts with Immuta policies enforced in real time. See below for instructions on using and .
Prerequisites:
Required Permission: Immuta: GOVERNANCE
to fit your organization's compliance requirements.
Required Permission: Immuta: USER_ADMIN
To register the Snowflake data consumer in Immuta,
.
to match the account ID for the data consumer. This value is the output on the data consumer side when SELECT CURRENT_ACCOUNT()
is run in Snowflake.
for your organization's policies.
.
Required Permission: Snowflake: ACCOUNTADMIN
To share the policy-protected data source,
Grant reference usage on the Immuta database to the share you created:
Replace the content in angle brackets above with the name of your Immuta database and Snowflake data share.
Prerequisites:
Use Case
As you follow this tutorial, these callouts will have examples centered around the same use case and will further explain the steps necessary to meet the following compliance requirement:
Compliance Requirement: Users can only see data from their country.
Use Case: Create Policies
The Immuta user will create a global data policy that restricts the rows users can see based on their attributes, which identify their country. In the example below, users with the attribute Country.JP
would only see rows that have JP
as a value in the CREDIT POINT OF SALE
column.
Required Permission: Immuta: GOVERNANCE
Use Case: Create Project
The Immuta user will create a project for the data share. In the example below, the user creates a Japan Data Share project that will only be shared with data consumers in Japan.
Required Permission: Immuta: CREATE_PROJECT
Use Case
Because data consumers have the attribute "Country.JP", this will be the equalized entitlement added to the project. The Immuta user editing the equalized entitlement must also have the attribute "Country.JP" to ensure they have access to the data they will share.
Required Permission: Immuta: CREATE_PROJECT
or PROJECT_MANAGEMENT
Required Permission: Snowflake: ACCOUNTADMIN
The commands run in Snowflake should look similar to this:
Snowflake table grants simplifies the management of privileges in Snowflake when using Immuta. Instead of having to manually grant users access to tables registered in Immuta, you allow Immuta to manage privileges on your Snowflake tables and views according to subscription policies. Then, users subscribed to a data source in Immuta can view and query the Snowflake table, while users who are not subscribed to the data source cannot view or query the Snowflake table.
Enabling Snowflake table grants gives the following privileges to the Immuta Snowflake role:
MANAGE GRANTS ON ACCOUNT
allows the Immuta Snowflake role to grant and revoke SELECT
privileges on Snowflake tables and views that have been added as data sources in Immuta.
CREATE ROLE ON ACCOUNT
allows for the creation of a Snowflake role for each user in Immuta, enabling fine-grained, attribute-based access controls to determine which tables are available to which individuals.
Since table privileges are granted to roles and not to users in Snowflake, Immuta's Snowflake table grants feature creates a new Snowflake role for each Immuta user. This design allows Immuta to manage table grants through fine-grained access controls that consider the individual attributes of users.
Each Snowflake user with an Immuta account will be granted a role that Immuta manages. The naming convention for this role is <IMMUTA>_USER_<username>
, where
<IMMUTA>
is the prefix you specified when enabling the feature on the Immuta app settings page.
<username>
is the user's Immuta username.
Users are granted access to each Snowflake table or view automatically when they are subscribed to the corresponding data source in Immuta.
Users have two options for querying Snowflake tables that are managed by Immuta:
that Immuta creates and manages. (For example, USE ROLE IMMUTA_USER_<username>
. See the for details about the role and name conventions.) If the current active primary role is used to query tables, USAGE
on a Snowflake warehouse must be granted to the Immuta-managed Snowflake role for each user.
, which allows users to use the privileges from all roles that they have been granted, including IMMUTA_USER_<username>
, in addition to the current active primary role. Users may also set a value for DEFAULT_SECONDARY_ROLES
as an on a Snowflake user. To learn more about primary roles and secondary roles in Snowflake, see .
If an Immuta instance is connected to an external IAM and that external IAM has a username identical to another username in Immuta's built-in IAM, those users will have the same Snowflake role, leading both to see the same data.
This page details how to install the for users on Snowflake Enterprise. If you currently use Snowflake Standard, see the .
Snowflake resource names
Use uppercase for the names of the Snowflake resources you create below.
Click the Integrations tab on the app settings page.
Click the +Add Native Integration button and select Snowflake from the dropdown menu.
Complete the Host, Port, and Default Warehouse fields.
Opt to check the Enable Project Workspace box. This will allow for managed write access within Snowflake. Note: Project workspaces still use Snowflake views, so the default role of the account used to create the data sources in the project must be added to the Excepted Roles List. This option is unavailable when is enabled.
Opt to check the Enable Impersonation box and customize the Impersonation Role to allow users to natively impersonate another user. You cannot edit this choice after you configure the integration.
is enabled by default; you can disable it by clicking the Enable Native Query Audit checkbox.
Configure the by scrolling to Integrations Settings and find the Snowflake Audit Sync Schedule section.
Enter how often, in hours, you want Immuta to ingest audit events from Snowflake as an integer between 1 and 24.
Continue with your integration configuration.
Opt to check the Automatically ingest Snowflake object tags box to allow Immuta to automatically import table and column tags from Snowflake.
in Snowflake at the account level may cause unexpected behavior of the Snowflake integration in Immuta
The must be set to false
(the default setting in Snowflake) at the account level. Changing this value to true
causes unexpected behavior of the Snowflake integration.
You have two options for configuring your Snowflake environment:
Known issue
To configure your Snowflake integration using password-only authentication in the automatic setup option, upgrade to Immuta v2024.2.7 or newer. Otherwise, Immuta will return an error.
Immuta requires temporary, one-time use of credentials with specific permissions.
When performing an automated installation, Immuta requires temporary, one-time use of credentials with the following permissions:
CREATE DATABASE ON ACCOUNT WITH GRANT OPTION
CREATE ROLE ON ACCOUNT WITH GRANT OPTION
CREATE USER ON ACCOUNT WITH GRANT OPTION
MANAGE GRANTS ON ACCOUNT WITH GRANT OPTION
APPLY MASKING POLICY ON ACCOUNT WITH GRANT OPTION
APPLY ROW ACCESS POLICY ON ACCOUNT WITH GRANT OPTION
These permissions will be used to create and configure a new IMMUTA database within the specified Snowflake instance. The credentials are not stored or saved by Immuta, and Immuta doesn’t retain access to them after initial setup is complete.
You can create a new account for Immuta to use that has these permissions, or you can grant temporary use of a pre-existing account. By default, the pre-existing account with appropriate permissions is ACCOUNTADMIN. If you create a new account, it can be deleted after initial setup is complete.
From the Select Authentication Method Dropdown, select one of the following authentication methods:
Username and Password: Complete the Username, Password, and Role fields.
Key Pair Authentication:
Complete the Username field.
When using a private key, enter the private key file password in the Additional Connection String Options. Use the following format: PRIV_KEY_FILE_PWD=<your_pw>
Click Key Pair (Required), and upload a Snowflake key pair file.
Complete the Role field.
Best practices: account creation
The account you create for Immuta should only be used for the integration and should not be used as the credentials for creating data sources in Immuta; doing so will cause issues. Instead, create a separate, dedicated READ-ONLY account for creating and registering data sources within Immuta.
The specified role used to run the bootstrap needs to have the following privileges:
CREATE DATABASE ON ACCOUNT WITH GRANT OPTION
CREATE ROLE ON ACCOUNT WITH GRANT OPTION
CREATE USER ON ACCOUNT WITH GRANT OPTION
MANAGE GRANTS ON ACCOUNT WITH GRANT OPTION
APPLY MASKING POLICY ON ACCOUNT WITH GRANT OPTION
APPLY ROW ACCESS POLICY ON ACCOUNT WITH GRANT OPTION
It will create a user called IMMUTA_SYSTEM_ACCOUNT
, and grant the following privileges to that user:
APPLY MASKING POLICY ON ACCOUNT
APPLY ROW ACCESS POLICY ON ACCOUNT
Additional grants associated with the IMMUTA database
GRANT IMPORTED PRIVILEGES ON DATABASE snowflake
GRANT APPLY TAG ON ACCOUNT
Select Manual.
Use the Dropdown Menu to select your Authentication Method:
Username and password: Enter the Username and Password and set them in the bootstrap script for the Immuta system account credentials.
Key pair authentication: Upload the Key Pair file and when using a private key, enter the private key file password in the Additional Connection String Options. Use the following format: PRIV_KEY_FILE_PWD=<your_pw>
Snowflake External OAuth:
Fill out the Token Endpoint. This is where the generated token is sent and is also known as aud
(Audience) and iss
(Issuer).
Fill out the Client ID. This is the subject of the generated token and is also known as sub
(Subject).
Select the method Immuta will use to obtain an access token:
Certificate:
Keep the Use Certificate checkbox enabled.
Opt to fill out the Resource field with a URI of the resource where the requested token will be used.
Enter the x509 Certificate Thumbprint. This identifies the corresponding key to the token and is often abbreviated as x5t
or is called sub
(Subject).
Upload the PEM Certificate, which is the client certificate that is used to sign the authorization request.
Client secret:
Uncheck the Use Certificate checkbox.
Enter the Client Secret (string). Immuta uses this secret to authenticate with the authorization server when it requests a token.
Download, fill out the appropriate fields, and run the bootstrap script linked in the Setup section.
Warning: different accounts
If you enabled a Snowflake workspace, select Warehouses from the dropdown menu that will be available to project owners when creating native Snowflake workspaces. Select from a list of all the warehouses available to the privileged account entered above. Note that any warehouse accessible by the PUBLIC role does not need to be explicitly added.
Enter the Excepted Roles/User List. Each role or username (both case-sensitive) in this list should be separated by a comma.
Excepted roles/users will have no policies applied to queries.
Any user with the username or acting under the role in this list will have no policies applied to them when querying Immuta protected Snowflake tables in Snowflake. Therefore, this list should be used for service or system accounts and the default role of the account used to create the data sources in the Immuta projects (if you have Snowflake workspace enabled).
Click Test Snowflake Connection.
Once the credentials are successfully tested, click Save and Confirm your changes.
A | B | C | D |
---|---|---|---|
Web | Database | Query Engine | |
---|---|---|---|
On September 30, 2024, Snowflake released a change to transition away from allowing password-only authentication. To use username and password authentication when configuring a new Snowflake integration, you must use the , which provides a script that permits password-only authentication by differentiating it as a legacy service with an additional parameter. Existing integrations will continue to function as-is.
The account used to enable the integration must be different from the account used to create data sources in Immuta. Otherwise, views won't be generated properly.
.
of the Snowflake table that has been registered in Immuta.
Using an model, to fit your organization's compliance requirements.
with the data sources that you will be sharing, a Snowflake workspace, and .
A user with the same attributes or groups as the data consumer must to represent the appropriate attributes and groups of the data consumer.
pointing to the project workspace using the schema and role in the Native Snowflake Access section of the project information. Repeat this step for each data source you want to share.
are not supported when Snowflake table grants is enabled.
: Grant Immuta one-time use of credentials to automatically configure your Snowflake environment and the integration.
: Run the Immuta script in your Snowflake environment yourself to configure your Snowflake environment and the integration.
On September 30, 2024, Snowflake released a change to transition away from allowing password-only authentication. To use username and password authentication when configuring a new Snowflake integration, you must use the , which provides a script that permits password-only authentication by differentiating it as a legacy service with an additional parameter. Existing integrations will continue to function as-is.
Alternatively, you can create the IMMUTA database within the specified Snowflake instance manually using the option.
If you have selected to automatically ingest Snowflake object tags, which enables ,
. Note that if you have an existing security integration, . The Immuta system role will be the Immuta database provided above with _SYSTEM
. If you used the default database name it will be IMMUTA_SYSTEM
.
Enter the Scope (string). The scope limits the operations and roles allowed in Snowflake by the access token. See the for details about scopes.
The account used to enable the integration must be different from the account used to create data sources in Immuta. Otherwise, views won't be generated properly.
.
5w4502
REDAC
990
6e3611
REDAC
750
9s7934
REDAC
380
Memory
4Gi
16Gi
8Gi
CPU
2
4
2
Storage
8Gi
24Gi
16Gi
Private preview
This feature is only available to select accounts. Reach out to your Immuta representative to enable this feature.
Snowflake Enterprise Edition
Contact your Immuta representative to enable this feature in your Immuta tenant.
Navigate to the App Setting page and click the Integration tab.
Click +Add Native Integration and select Snowflake from the dropdown menu.
Complete the Host, Port, and Default Warehouse fields.
Enable Native Query Audit.
Enable Native Lineage and complete the following fields:
Ingest Batch Sizes: This setting configures the number of rows Immuta ingests per batch when streaming Access History data from your Snowflake instance.
Table Filter: This filter determines which tables Immuta will ingest lineage for. Enter a regular expression that excludes /
from the beginning and end to filter tables. Without this filter, Immuta will attempt to ingest lineage for every table on your Snowflake instance.
Tag Filter: This filter determines which tags to propagate using lineage. Enter a regular expression that excludes /
from the beginning and end to filter tags. Without this filter, Immuta will ingest lineage for every tag on your Snowflake instance.
Opt to enable Automatically ingest Snowflake object tags.
Select Manual or Automatic Setup and follow the steps in this guide to configure the Snowflake integration
Authenticate with the Immuta API.
The Snowflake lineage sync endpoint triggers the native lineage ingestion job that allows Immuta to propagate Snowflake tags added through lineage to Immuta data sources.
Copy the example and replace the Immuta URL and API key with your own.
Change the payload attribute values to your own, where
tableFilter
(string): This regular expression determines which tables Immuta will ingest lineage for. Enter a regular expression that excludes /
from the beginning and end to filter tables. Without this filter, Immuta will attempt to ingest lineage for every table on your Snowflake instance.
batchSize
(integer): This parameter configures the number of rows Immuta ingests per batch when streaming Access History data from your Snowflake instance. Minimum 1.
lastTimestamp
(string): Setting this parameter will only return lineage events later than the value provided. Use a format like 2022-06-29T09:47:06.012-07:00.
Once the sync job is complete, you can complete the following steps:
To migrate from the private preview version of table grants (available before September 2022) to the GA version, complete the steps below.
Navigate to the App Settings page.
Click Integration Settings in the left panel, and scroll to the Global Integration Settings section.
Uncheck the Snowflake Table Grants checkbox to disable the feature.
Click Save. Wait for about 1 minute per 1000 users. This gives time for Immuta to drop all the previously created user roles.
Use the Enable Snowflake table grants tutorial to re-enable the feature.
Databricks Unity Catalog allows you to manage and access data in your Databricks account across all of your workspaces. With Immuta’s Databricks Unity Catalog integration, you can write your policies in Immuta and have them enforced automatically by Databricks across data in your Unity Catalog metastore.
APPLICATION_ADMIN
Immuta permission for the user configuring the integration in Immuta.
Databricks privileges:
An account with the CREATE CATALOG
privilege on the Unity Catalog metastore to create an Immuta-owned catalog and tables. For automatic setups, this privilege must be granted to the Immuta system account user. For manual setups, the user running the Immuta script must have this privilege.
An Immuta system account user requires the following Databricks privileges:
OWNER
permission on the Immuta catalog you configure.
OWNER
permission on catalogs with schemas and tables registered as Immuta data sources so that Immuta can administer Unity Catalog row-level and column-level security controls. This permission can be applied by granting OWNER
on a catalog to a Databricks group that includes the Immuta system account user to allow for multiple owners. If the OWNER
permission cannot be applied at the catalog- or schema-level, each table registered as an Immuta data source must individually have the OWNER
permission granted to the Immuta system account user.
USE CATALOG
and USE SCHEMA
on parent catalogs and schemas of tables registered as Immuta data sources so that the Immuta system account user can interact with those tables.
SELECT
and MODIFY
on all tables registered as Immuta data sources so that the system account user can grant and revoke access to tables and apply Unity Catalog row- and column-level security controls.
USE CATALOG
on the system
catalog for native query audit.
USE SCHEMA
on the system.access
schema for native query audit.
SELECT
on the following system tables for native query audit:
system.access.audit
system.access.table_lineage
system.access.column_lineage
Before you configure the Databricks Unity Catalog integration, ensure that you have fulfilled the following requirements:
Unity Catalog metastore created and attached to a Databricks workspace. Immuta supports configuring a single metastore for each configured integration, and that metastore may be attached to multiple Databricks workspaces.
Unity Catalog enabled on your Databricks cluster or SQL warehouse. All SQL warehouses have Unity Catalog enabled if your workspace is attached to a Unity Catalog metastore. Immuta recommends linking a SQL warehouse to your Immuta instance rather than a cluster for both performance and availability reasons.
Personal access token generated for the user that Immuta will use to manage policies in Unity Catalog.
No Databricks SQL integrations are configured in your Immuta instance. The Databricks Unity Catalog integration replaces the Databricks SQL integration entirely and cannot coexist with it. If there are configured Databricks SQL integrations, remove them and add a Databricks Unity Catalog integration in its place. Databricks data sources will also need to be migrated if they are defined in the hive_metastore
catalog.
No Databricks Spark integrations with Unity Catalog support are configured in your Immuta instance. Immuta does not support that integration and the Databricks Unity Catalog integration concurrently. See the Unity Catalog overview for supported cluster configurations.
Unity Catalog system tables enabled for native query audit.
Best practices
Ensure your integration with Unity Catalog goes smoothly by following these guidelines:
Use a Databricks SQL warehouse to configure the integration. Databricks SQL warehouses are faster to start than traditional clusters, require less management, and can run all the SQL that Immuta requires for policy administration. A serverless warehouse provides nearly instant startup time and is the preferred option for connecting to Immuta.
Move all data into Unity Catalog before configuring Immuta with Unity Catalog. The default catalog used once Unity Catalog support is enabled in Immuta is the hive_metastore
, which is not supported by the Unity Catalog native integration. Data sources in the Hive Metastore must be managed by the Databricks Spark integration. Existing data sources will need to be re-created after they are moved to Unity Catalog and the Unity Catalog integration is configured.
Disable existing Databricks SQL and Databricks Spark with Unity Catalog Support integrations.
Ensure that all Databricks clusters that have Immuta installed are stopped and the Immuta configuration is removed from the cluster. Immuta-specific cluster configuration is no longer needed with the Databricks Unity Catalog integration.
Move all data into Unity Catalog before configuring Immuta with Unity Catalog. Existing data sources will need to be re-created after they are moved to Unity Catalog and the Unity Catalog integration is configured. If you don't move all data before configuring the integration, metastore magic will protect your existing data sources throughout the migration process.
Existing data source migration
If you have existing Databricks data sources, complete these migration steps before proceeding.
You have two options for configuring your Databricks Unity Catalog integration:
Automatic setup: Immuta creates the catalogs, schemas, tables, and functions using the integration's configured personal access token.
Manual setup: Run the Immuta script in Databricks yourself to create the catalog. You can also modify the script to customize your storage location for tables, schemas, or catalogs.
Required permissions
When performing an automatic setup, the Databricks personal access token you configure below must be attached to an account with the following permissions for the metastore associated with the specified Databricks workspace:
USE CATALOG
and USE SCHEMA
on parent catalogs and schemas of tables registered as Immuta data sources so that the Immuta system account user can interact with those tables.
SELECT
and MODIFY
on all tables registered as Immuta data sources so that the system account user can grant and revoke access to tables and apply Unity Catalog row- and column-level security controls.
OWNER
permission on the Immuta catalog created below.
OWNER
permission on catalogs with schemas and tables registered as Immuta data sources so that Immuta can administer Unity Catalog row-level and column-level security controls. This permission can be applied by granting OWNER
on a catalog to a Databricks group that includes the Immuta system account user to allow for multiple owners. If the OWNER
permission cannot be applied at the catalog- or schema-level, each table registered as an Immuta data source must individually have the OWNER
permission granted to the Immuta system account user.
CREATE CATALOG
on the workspace metastore.
USE CATALOG
on the system
catalog for native query audit.
USE SCHEMA
on the system.access
schema for native query audit.
SELECT
on the following system tables for native query audit:
system.access.audit
system.access.table_lineage
system.access.column_lineage
Click the App Settings icon in the left sidebar.
Scroll to the Global Integration Settings section and check the Enable Databricks Unity Catalog support in Immuta checkbox. The additional settings in this section are only relevant to the Databricks Spark with Unity Catalog integration and will not have any effect on the Unity Catalog integration. These can be left with their default values.
Click the Integrations tab.
Click + Add Native Integration and select Databricks Unity Catalog from the dropdown menu.
Complete the following fields:
Server Hostname is the hostname of your Databricks workspace.
HTTP Path is the HTTP path of your Databricks cluster or SQL warehouse.
Immuta Catalog is the name of the catalog Immuta will create to store internal entitlements and other user data specific to Immuta. This catalog will only be readable for the Immuta service principal and should not be granted to other users. The catalog name may only contain letters, numbers, and underscores and cannot start with a number.
If using a proxy server with Databricks Unity Catalog, click the Enable Proxy Support checkbox and complete the Proxy Host and Proxy Port fields. The username and password fields are optional.
Opt to fill out the Exemption Group field with the name of a group in Databricks that will be excluded from having data policies applied and must not be changed from the default value. Create this account-level group for privileged users and service accounts that require an unmasked view of data before configuring the integration in Immuta.
Unity Catalog query audit is enabled by default; you can disable it by clicking the Enable Native Query Audit checkbox. Ensure you have enabled system tables in Unity Catalog and provided the required access to the Immuta system account.
Configure the audit frequency by scrolling to Integrations Settings and find the Unity Catalog Audit Sync Schedule section.
Enter how often, in hours, you want Immuta to ingest audit events from Unity Catalog as an integer between 1 and 24.
Continue with your integration configuration.
Enter a Databricks Personal Access Token. This is the access token for the Immuta service principal. This service principal must have the metastore privileges listed above for the metastore associated with the Databricks workspace. If this token is configured to expire, update this field regularly for the integration to continue to function.
Click Test Databricks Unity Catalog Connection.
Save and Confirm your changes.
Required permissions
When performing a manual setup, the following Databricks permissions are required:
The user running the script must have the CREATE CATALOG
permission on the workspace metastore.
The Databricks personal access token you configure below must be attached to an account with the following permissions:
USE CATALOG
and USE SCHEMA
on parent catalogs and schemas of tables registered as Immuta data sources so that the Immuta system account user can interact with those tables.
SELECT
and MODIFY
on all tables registered as Immuta data sources so that the system account user can grant and revoke access to tables and apply Unity Catalog row- and column-level security controls.
OWNER
permission on the Immuta catalog created below.
OWNER
permission on catalogs with schemas and tables registered as Immuta data sources so that Immuta can administer Unity Catalog row-level and column-level security controls. This permission can be applied by granting OWNER
on a catalog to a Databricks group that includes the Immuta system account user to allow for multiple owners. If the OWNER
permission cannot be applied at the catalog- or schema-level, each table registered as an Immuta data source must individually have the OWNER
permission granted to the Immuta system account user.
USE CATALOG
on the system
catalog for native query audit.
USE SCHEMA
on the system.access
schema for native query audit.
SELECT
on the following system tables for native query audit:
system.access.audit
system.access.table_lineage
system.access.column_lineage
Click the App Settings icon in the left sidebar.
Scroll to the Global Integration Settings section and check the Enable Databricks Unity Catalog support in Immuta checkbox. The additional settings in this section are only relevant to the Databricks Spark with Unity Catalog integration and will not have any effect on the Unity Catalog integration. These can be left with their default values.
Click the Integrations tab.
Click + Add Native Integration and select Databricks Unity Catalog from the dropdown menu.
Complete the following fields:
Server Hostname is the hostname of your Databricks workspace.
HTTP Path is the HTTP path of your Databricks cluster or SQL warehouse.
Immuta Catalog is the name of the catalog Immuta will create to store internal entitlements and other user data specific to Immuta. This catalog will only be readable for the Immuta service principal and should not be granted to other users. The catalog name may only contain letters, numbers, and underscores and cannot start with a number.
If using a proxy server with Databricks Unity Catalog, click the Enable Proxy Support checkbox and complete the Proxy Host and Proxy Port fields. The username and password fields are optional.
Opt to fill out the Exemption Group field with the name of a group in Databricks that will be excluded from having data policies applied and must not be changed from the default value. Create this account-level group for privileged users and service accounts that require an unmasked view of data before configuring the integration in Immuta.
Unity Catalog query audit is enabled by default; you can disable it by clicking the Enable Native Query Audit checkbox. Ensure you have enabled system tables in Unity Catalog and provided the required access to the Immuta system account.
Configure the audit frequency by scrolling to Integrations Settings and find the Unity Catalog Audit Sync Schedule section.
Enter how often, in hours, you want Immuta to ingest audit events from Unity Catalog as an integer between 1 and 24.
Continue with your integration configuration.
Enter a Databricks Personal Access Token. This is the access token for the Immuta service principal. This service principal must have the metastore privileges listed above for the metastore associated with the Databricks workspace. If this token is configured to expire, update this field regularly for the integration to continue to function.
Select the Manual toggle and copy or download the script. You can modify the script to customize your storage location for tables, schemas, or catalogs.
Run the script in Databricks.
Click Test Databricks Unity Catalog Connection.
Save and Confirm your changes.
To enable native query audit for Unity Catalog, complete the following steps before configuring the integration:
Grant your Immuta system account user access to the Databricks Unity Catalog system tables. For Databricks Unity Catalog audit to work, Immuta must have, at minimum, the following access.
USE CATALOG
on the system
catalog
USE SCHEMA
on the system.access
schema
SELECT
on the following system tables:
system.access.audit
system.access.table_lineage
system.access.column_lineage
Use the Databricks Personal Access Token in the configuration above for the account you just granted system table access. This account will be the Immuta system account user.
Register Unity Catalog securables as Immuta data sources.
External data connectors and query-federated tables are preview features in Databricks. See the Databricks documentation for details about the support and limitations of these features before registering them as data sources in the Unity Catalog integration.
Map Databricks usernames to Immuta to ensure Immuta properly enforces policies and audits user queries.
Build global policies in Immuta to enforce table-, column-, and row-level security.
The steps outlined on this page are necessary if you meet both of the following criteria:
You have the Snowflake low row access policy mode enabled in private preview.
You have user impersonation enabled.
If you do not meet this criteria, follow the instructions on the configuration guide.
To upgrade to generally available version of the feature, either
disable your Snowflake integration on the app settings page and then re-enable it, OR
disable Snowflake low row access policy mode on the app settings page and re-enable it.
Databricks Unity Catalog allows you to manage and access data in your Databricks account across all of your workspaces and introduces fine-grained access controls in Databricks.
Immuta’s integration with Unity Catalog allows you to manage multiple Databricks workspaces through Unity Catalog while protecting your data with Immuta policies. Instead of manually creating UDFs or granting access to each table in Databricks, you can author your policies in Immuta and have Immuta manage and enforce Unity Catalog access-control policies on your data in Databricks clusters or SQL warehouses:
Subscription policies: Immuta subscription policies automatically grant and revoke access to Databricks tables.
Data policies: Immuta data policies enforce row- and column-level security without creating views, so users can query tables as they always have without their workflows being disrupted.
Unity Catalog uses the following hierarchy of data objects:
Metastore: Created at the account level and is attached to one or more Databricks workspaces. The metastore contains metadata of all the catalogs, schemas, and tables available to query. All clusters on that workspace use the configured metastore and all workspaces that are configured to use a single metastore share those objects.
Catalog: A catalog sits on top of schemas (also called databases) and tables to manage permissions across a set of schemas.
Schema: Organizes tables and views.
Table: Tables can be managed or external tables.
For details about the Unity Catalog object model, see the Databricks Unity Catalog documentation.
The Databricks Unity Catalog integration supports
applying column masking and row-redaction policies on tables
applying subscription polices on tables and views
enforcing Unity Catalog access controls, even if Immuta becomes disconnected
Delta and Parquet files
allowing non-Immuta reads and writes
using Photon
using a proxy server
Unity Catalog supports managing permissions at the Databricks account level through controls applied directly to objects in the metastore. To interact with the metastore and apply controls to any table, Immuta requires a personal access token (PAT) for an Immuta system account user with permissions to manage all data protected by Immuta. See the permissions requirements section for a list of specific Databricks privileges.
Immuta uses this Immuta system account user to run queries that set up all the tables, user-defined functions (UDFs), and other data necessary for policy enforcement. Upon enabling the native integration, Immuta will create a catalog named after your provided workspaceName
that contains two schemas:
immuta_system
: Contains internal Immuta data.
immuta_policies
: Contains policy UDFs.
When policies require changes to be pushed to Unity Catalog, Immuta updates the internal tables in the immuta_system
schema with the updated policy information. If necessary, new UDFs are pushed to replace any out-of-date policies in the immuta_policies
schema and any row filters or column masks are updated to point at the new policies. Many of these operations require compute on the configured Databricks cluster or SQL endpoint, so compute must be available for these policies to succeed.
Immuta’s Unity Catalog integration applies Databricks table-, row-, and column-level security controls that are enforced natively within Databricks. Immuta's management of these Databricks security controls is automated and ensures that they synchronize with Immuta policy or user entitlement changes.
Table-level security: Immuta manages REVOKE and GRANT privileges on securable objects in Databricks through subscription policies. When you create a subscription policy in Immuta, Immuta uses the Unity Catalog API to issue GRANTS or REVOKES against the catalog, schema, or table in Databricks for every user affected by that subscription policy.
Row-level security: Immuta applies SQL UDFs to restrict access to rows for querying users.
Column-level security: Immuta applies column-mask SQL UDFs to tables for querying users. These column-mask UDFs run for any column that requires masking.
The Unity Catalog integration supports the following policy types:
Conditional masking
Constant
Custom masking
Hashing
Null
Regex: You must use the global regex flag (g
) when creating a regex masking policy in this integration. You cannot use the case insensitive regex flag (i
) when creating a regex masking policy in this integration. See the limitations section for examples.
Rounding (date and numeric rounding)
Matching (only show rows where)
Custom WHERE
Never
Where user
Where value in column
Minimization
Time-based restrictions
Some users may need to be exempt from masking and row-level policy enforcement. When you add user accounts to the configured exemption group in Databricks, Immuta will not enforce policies for those users. Exemption groups are created when the Unity Catalog integration is configured, and no policies will apply to these users' queries, despite any policies enforced on the tables they query.
The principal used to register data sources in Immuta will be automatically added to this exemption group for that Databricks table. Consequently, users added to this list and used to register data sources in Immuta should be limited to service accounts.
hive_metastore
When enabling Unity Catalog support in Immuta, the catalog for all Databricks data sources will be updated to point at the default hive_metastore
catalog. Internally, Databricks exposes this catalog as a proxy to the workspace-level Hive metastore that schemas and tables were kept in before Unity Catalog. Since this catalog is not a real Unity Catalog catalog, it does not support any Unity Catalog policies. Therefore, Immuta will ignore any data sources in the hive_metastore
in any Databricks Unity Catalog integration, and policies will not be applied to tables there.
However, with Databricks metastore magic you can use hive_metastore
and enforce subscription and data policies with the Databricks Spark integration.
The Databricks Unity Catalog integration supports the access token method to configure the integration and create data sources in Immuta. This is the access token for the Immuta service principal. This service principal must have the metastore privileges listed in the permissions section for the metastore associated with the Databricks workspace. If this token is configured to expire, update this field regularly for the integration to continue to function.
The Unity Catalog data object model introduces a 3-tiered namespace, as outlined above. Consequently, your Databricks tables registered as data sources in Immuta will reference the catalog, schema (also called a database), and table.
External data connectors and query-federated tables are preview features in Databricks. See the Databricks documentation for details about the support and limitations of these features before registering them as data sources in the Unity Catalog integration.
Access requirements
For Databricks Unity Catalog audit to work, Immuta must have, at minimum, the following access.
USE CATALOG
on the system
catalog
USE SCHEMA
on the system.access
schema
SELECT
on the following system tables:
system.access.audit
system.access.table_lineage
system.access.column_lineage
The Databricks Unity Catalog integration audits user queries run in clusters or SQL warehouses for deployments configured with the Databricks Unity Catalog integration. The audit ingest is set when configuring the integration and the audit logs can be scoped to only ingest specific workspaces if needed.
See the Unity Catalog native audit page for details about manually prompting ingest of audit logs and the contents of the logs.
See the Enable Unity Catalog guide for a list of requirements.
The table below outlines the integrations supported for various Databricks cluster configurations. For example, the only integration available to enforce policies on a cluster configured to run on Databricks Runtime 9.1 is the Databricks Spark integration.
Legend:
Unity Catalog row- and column-level security controls are unsupported for single-user clusters. See the Databricks documentation for details about this limitation.
Row access policies with more than 1023 columns are unsupported. This is an underlying limitation of UDFs in Databricks. Immuta will only create row access policies with the minimum number of referenced columns. This limit will therefore apply to the number of columns referenced in the policy and not the total number in the table.
If you disable table grants, Immuta revokes the grants. Therefore, if users had access to a table before enabling Immuta, they’ll lose access.
You must use the global regex flag (g
) when creating a regex masking policy in this integration, and you cannot use the case insensitive regex flag (i
) when creating a regex masking policy in this integration. See the examples below for guidance:
regex with a global flag (supported): /^ssn|social ?security$/g
regex without a global flag (unsupported): /^ssn|social ?security$/
regex with a case insensitive flag (unsupported): /^ssn|social ?security$/gi
regex without a case insensitive flag (supported): /^ssn|social ?security$/g
If a registered data source is owned by a Databricks group at the table level, then the Unity Catalog integration cannot apply data masking policies to that table in Unity Catalog.
Therefore, set all table-level ownership on your Unity Catalog data sources to an individual user or service principal instead of a Databricks group. Catalogs and schemas can still be owned by a Databricks group, as ownership at that level doesn't interfere with the integration.
The following features are currently unsupported:
Databricks change data feed support
Immuta projects
Multiple IAMs on a single cluster
Column masking policies on views
Mixing masking policies on the same column
Row-redaction policies on views
R and Scala cluster support
Scratch paths
User impersonation
Policy enforcement on raw Spark reads
Python UDFs for advanced masking functions
Direct file-to-SQL reads
Data policies on ARRAY, MAP, or STRUCT type columns
Snippets for Databricks data sources may be empty in the Immuta UI.
When you enable Unity Catalog, Immuta automatically migrates your existing Databricks data sources in Immuta to reference the legacy hive_metastore
catalog to account for Unity Catalog's . New data sources will reference the Unity Catalog metastore you create and attach to your Databricks workspace.
Because the hive_metastore
catalog is not managed by Unity Catalog, existing data sources in the hive_metastore
cannot have Unity Catalog access controls applied to them. .
To allow Immuta to administer Unity Catalog access controls on that data, move the data to Unity Catalog and re-register those tables in Immuta by completing the steps below. If you don't move all data before configuring the integration, will protect your existing data sources throughout the migration process.
Disable all existing Databricks Spark integrations with Unity Catalog support or Databricks SQL integrations. Note: Immuta supports running the Databricks Spark integration with the Unity Catalog integration concurrently, so Databricks Spark integrations do not have to be disabled before migrating to Unity Catalog.
Ensure that all Databricks clusters that have Immuta installed are stopped and the Immuta configuration is removed from the cluster. Immuta-specific cluster configuration is no longer needed with the Databricks Unity Catalog integration.
Move all data into Unity Catalog before configuring Immuta with Unity Catalog. Existing data sources will need to be re-created after they are moved to Unity Catalog and the Unity Catalog integration is configured.
.
Audience: Data Owners and Data Users
Content Summary: This page provides an overview of the Databricks integration. For installation instructions, see the and the .
Databricks is a plugin integration with Immuta. This integration allows you to protect access to tables and manage row-, column-, and cell-level controls without enabling table ACLs or credential passthrough. Policies are applied to the plan that Spark builds for a user's query and enforced live on-cluster.
An Application Admin will configure Databricks with either the
on the Immuta App Settings page
where Immuta artifacts must be downloaded and staged to your Databricks clusters
In both configuration options, the Immuta init script adds the Immuta plugin in Databricks: the Immuta Security Manager, wrappers, and Immuta analysis hook plan rewrite. Once an administrator gives users Can Attach To
entitlements on the cluster, they can query Immuta-registered data source directly in their Databricks notebooks.
Simplified Databricks Configuration Additional Entitlements
The credentials used to do the Simplified Databricks configuration with automatic cluster policy push must have the following entitlement:
Allow cluster creation
This will give Immuta temporary permission to push the cluster policies to the configured Databricks workspace and overwrite any cluster policy templates previously applied to the workspace.
Immuta Best Practices: Test User
Test the integration on an Immuta-enabled cluster with a user that is not a Databricks administrator.
immuta
DatabaseWhen a table is registered in Immuta as a data source, users can see that table in the native Databricks database and in the immuta
database. This allows for an option to use a single database (immuta
) for all tables.
All access controls must go through SQL.
Note: With R, you must load the SparkR library in a cell before accessing the data.
The Immuta init script adds the immuta
plugin in Databricks: the Immuta SecurityManager, wrappers, and Immuta analysis hook plan rewrite.
Data source metadata, tags, user metadata, and policy definitions are stored in Immuta's Metadata Database.
During Spark Analysis, Spark calls down to the Metastore to get table metadata.
Immuta intercepts the call to retrieve table metadata from the Metastore.
Immuta modifies the Logical Plan to enforce policies that apply to that user.
Immuta wraps the Physical Plan with specific Java classes to signal to the SecurityManager that it is a trusted node and is allowed to scan raw data. Immuta blocks direct access to S3 unless it backs a registered table in Immuta.
The Physical Plan is applied and filters out and transforms raw data coming back to the user.
The user sees policy-enforced data.
This page contains references to the term whitelist, which Immuta no longer uses. When the term is removed from the software, it will be removed from this page.
Databricks instance: Premium tier workspace and
Databricks instance has network level access to Immuta instance
Access to
Permissions and access to download (outside Internet access) or transfer files to the host machine
Recommended Databricks Workspace Configurations:
Note: Azure Databricks authenticates users with Microsoft Entra ID. Be sure to configure your Immuta instance with an IAM that uses the same user ID as does Microsoft Entra ID. Immuta's Spark security plugin will look to match this user ID between the two systems. See this for details.
Use the table below to determine which version of Immuta supports your Databricks Runtime version:
Databricks Runtime Version | Immuta Version |
---|
The table below outlines the integrations supported for various Databricks cluster configurations. For example, the only integration available to enforce policies on a cluster configured to run on Databricks Runtime 9.1 is the Databricks Spark integration.
Legend:
Immuta supports the Custom access mode.
Supported Languages:
Python
SQL
R (requires advanced configuration; work with your Immuta support professional to use R)
Scala (requires advanced configuration; work with your Immuta support professional to use Scala)
Users Who Can Read Raw Tables On-Cluster
If a Databricks Admin is tied to an Immuta account, they will have the ability to read raw tables on-cluster.
If a Databricks user is listed as an "ignored" user, they will have the ability to read raw tables on-cluster. Users can be added to the immuta.spark.acl.whitelist
configuration to become ignored users.
The Immuta Databricks integration injects an Immuta plugin into the SparkSQL stack at cluster startup. The Immuta plugin creates an "immuta" database that is available for querying and intercepts all queries executed against it. For these queries, policy determinations will be obtained from the connected Immuta instance and applied before returning the results to the user.
The Databricks cluster init script provided by Immuta downloads the Immuta artifacts onto the target cluster and puts them in the appropriate locations on local disk for use by Spark. Once the init script runs, the Spark application running on the Databricks cluster will have the appropriate artifacts on its CLASSPATH to use Immuta for policy enforcement.
The cluster init script uses environment variables in order to
Determine the location of the required artifacts for downloading.
Authenticate with the service/storage containing the artifacts.
Note: Each target system/storage layer (HTTPS, for example) can only have one set of environment variables, so the cluster init script assumes that any artifact retrieved from that system uses the same environment variables.
There are two installation options for Databricks. Click a link below to navigate to a tutorial for your chosen method:
Adding the integration on the App Settings page.
Downloading or automatically pushing cluster policies to your Databricks workspace.
Creating or restarting your cluster.
Downloading and configuring Immuta artifacts.
Staging Immuta artifacts somewhere the cluster can read from during its startup procedures.
Protecting Immuta environment variables with Databricks Secrets.
Creating and configuring the cluster to start with the init script and load Immuta into its SparkSQL environment.
For easier debugging of the Immuta Databricks installation, enable cluster init script logging. In the cluster page in Databricks for the target cluster, under Advanced Options -> Logging, change the Destination from NONE
to DBFS
and change the path to the desired output location. Note: The unique cluster ID will be added onto the end of the provided path.
For debugging issues between the Immuta web service and Databricks, you can view the Spark UI on your target Databricks cluster. On the cluster page, click the Spark UI tab, which shows the Spark application UI for the cluster. If you encounter issues creating Databricks data sources in Immuta, you can also view the JDBC/ODBC Server portion of the Spark UI to see the result of queries that have been sent from Immuta to Databricks.
The Validation and Debugging Notebook (immuta-validation.ipynb
) is packaged with other Databricks release artifacts (for manual installations), or it can be downloaded from the App Settings page when configuring native Databricks through the Immuta UI. This notebook is designed to be used by or under the guidance of an Immuta Support Professional.
Import the notebook into a Databricks workspace by navigating to Home in your Databricks instance.
Click the arrow next to your name and select Import.
Once you have executed commands in the notebook and populated it with debugging information, export the notebook and its contents by opening the File menu, selecting Export, and then selecting DBC Archive.
Audience: System Administrators
Content Summary: This guide details the simplified installation method for enabling native access to Databricks with Immuta policies enforced.
Prerequisites: Ensure your Databricks workspace, instance, and permissions meet the guidelines outlined in the .
Databricks Unity Catalog
If Unity Catalog is enabled in a Databricks workspace, you must use an Immuta cluster policy when you setup the integration to create an Immuta-enabled cluster.
Log in to Immuta and click the App Settings icon in the left sidebar.
Scroll to the System API Key subsection under HDFS and click Generate Key.
Click Save and then Confirm.
Scroll to the Integration Settings section, and click + Add a Native Integration.
Select Databricks Integration from the dropdown menu.
Complete the Hostname field.
Enter a Unique ID for the integration. By default, your Immuta instance URL populates this field. This ID is used to tie the set of cluster policies to your instance of Immuta and allows multiple instances of Immuta to access the same Databricks workspace without cluster policy conflicts.
Select your configured Immuta IAM from the dropdown menu.
Choose one of the following options for your data access model:
Protected until made available by policy: All tables are hidden until a user is permissioned through an Immuta policy. This is how most databases work and assumes least privileged access and also means you will have to register all tables with Immuta.
Available until protected by policy: All tables are open until explicitly registered and protected by Immuta. This makes a lot of sense if most of your tables are non-sensitive and you can pick and choose which to protect.
Select the Storage Access Type from the dropdown menu.
Opt to add any Additional Hadoop Configuration Files.
Click Add Native Integration.
Several cluster policies are available on the App Settings page when configuring this integration:
Click a link above to read more about each of these cluster policies before continuing with the tutorial.
Click Configure Cluster Policies.
Select one or more cluster policies in the matrix by clicking the Select button(s).
Opt to make changes to these cluster policies by clicking Additional Policy Changes and editing the text field.
Use one of the two Installation Types described in the tabs below to apply the policies to your cluster:
Automatically Push Cluster Policies
This option allows you to automatically push the cluster policies to the configured Databricks workspace. This will overwrite any cluster policy templates previously applied to this workspace.
Select the Automatically Push Cluster Policies radio button.
Enter your Admin Token. This token must be for a user who can create cluster policies in Databricks.
Click Apply Policies.
Manually Push Cluster Policies
Enabling this option will allow you to manually push the cluster policies to the configured Databricks workspace. There will be various files to download and manually push to the configured Databricks workspace.
Select the Manually Push Cluster Policies radio button.
Click Download Init Script.
Follow the steps in the Instructions to upload the init script to DBFS section.
Click Download Policies, and then manually add these Cluster Policies in Databricks.
Opt to click the Download the Benchmarking Suite to compare a regular Databricks cluster to one protected by Immuta. Detailed instructions are available in the first notebook, which will require an Immuta and non-Immuta cluster to generate test data and perform queries.
Click Close, and then click Save and Confirm.
In the Policy dropdown, select the Cluster Policies you pushed or manually added from Immuta.
Select the Custom Access mode.
Opt to adjust Autopilot Options and Worker Type settings: The default values provided here may be more than what is necessary for non-production or smaller use-cases. To reduce resource usage you can enable/disable autoscaling, limit the size and number of workers, and set the inactivity timeout to a lower value.
Opt to configure the Instances tab in the Advanced Options section:
Click Create Cluster.
Before users can query an Immuta data source, an administrator must give the user Can Attach To
permissions on the cluster.
This page outlines the configuration for setting up project UDFs, which allow users to set their current project in Immuta through Spark. For details about the specific functions available and how to use them, see the .
Use Project UDFs in Databricks
Currently, caches are not all invalidated outside of Databricks because Immuta caches information pertaining to a user's current project in the NameNode plugin and in Vulcan. Consequently, this feature should only be used in Databricks.
Immuta caches a mapping of user accounts and users' current projects in the Immuta Web Service and on-cluster. When users change their project with UDFs instead of the Immuta UI, Immuta invalidates all the caches on-cluster (so that everything changes immediately) and the cluster submits a request to change the project context to a web worker. Immediately after that request, another call is made to a web worker to refresh the current project.
To allow use of project UDFs in Spark jobs, raise the caching on-cluster and lower the cache timeouts for the Immuta Web Service. Otherwise, caching could cause dissonance among the requests and calls to multiple web workers when users try to change their project contexts.
Click the App Settings icon in the left sidebar and scroll to the HDFS Cache Settings section.
Lower the Cache TTL of HDFS user names (ms) to 0.
Click Save.
In the Spark environment variables section, set the IMMUTA_CURRENT_PROJECT_CACHE_TIMEOUT_SECONDS
and IMMUTA_PROJECT_CACHE_TIMEOUT_SECONDS
to high values (like 10000
).
Note: These caches will be invalidated on cluster when a user calls immuta.set_current_project
, so they can effectively be cached permanently on cluster to avoid periodically reaching out to the web service.
Audience: System Administrators
Content Summary: This page outlines how to install and configure trusted third-party libraries for Databricks.
Specifying More than One Trusted Library
To specify more than one trusted library, comma delimit the URIs:
In the Databricks Clusters UI, install your third-party library .jar or Maven artifact with Library Source Upload
, DBFS
, DBFS/S3
, or Maven
. Alternatively, use the Databricks libraries API.
In the Databricks Clusters UI, add the IMMUTA_SPARK_DATABRICKS_TRUSTED_LIB_URIS
property as a Spark environment variable and set it to your artifact's URI:
Maven Artifacts
For Maven artifacts, the URI is maven:/<maven_coordinates>
, where <maven_coordinates>
is the Coordinates field found when clicking on the installed artifact on the Libraries tab in the Databricks Clusters UI. Here's an example of an installed artifact:
In this example, you would add the following Spark environment variable:
.jar Artifacts
For jar artifacts, the URI is the Source field found when clicking on the installed artifact on the Libraries tab in the Databricks Clusters UI. For artifacts installed from DBFS or S3, this ends up being the original URI to your artifact. For uploaded artifacts, Databricks will rename your .jar and put it in a directory in DBFS. Here's an example of an installed artifact:
In this example, you would add the following Spark environment variable:
Restart the cluster.
Once the cluster is up, execute a command in a notebook. If the trusted library installation is successful, you should see driver log messages like this:
Audience: System Administrators
Content Summary: This page describes how to hide the
immuta
database in Databricks.
Hiding the database does not disable access to it
Queries can still be performed against tables in the immuta
database using the Immuta-qualified table name (e.g., immuta.my_schema_my_table
) regardless of whether or not this feature is enabled.
The immuta
database on Immuta-enabled clusters allows Immuta to track Immuta-managed data sources separately from remote Databricks tables so that policies and other security features can be applied. However, Immuta supports raw tables in Databricks, so table-backed queries do not need to reference this database. When configuring a Databricks cluster, you can hide immuta
from any calls to SHOW DATABASES
so that users are not confused or misled by that database.
immuta
DatabaseWhen configuring a Databricks cluster, hide immuta
by using the following environment variable in the :
Then, Immuta will not show this database when a SHOW DATABASES
query is performed.
Audience: System Administrators
Content Summary: This guide illustrates how to run R and Scala
spark-submit
jobs on Databricks, including prerequisites and caveats.
Language Support
R and Scala are supported, but require advanced configuration; work with your Immuta support professional to use these languages. Python spark-submit
jobs are not supported by the Databricks Spark integration.
Using R in a Notebook
Because of how some user properties are populated in Databricks, users should load the SparkR library in a separate cell before attempting to use any SparkR functions.
spark-submit
Before you can run spark-submit
jobs on Databricks you must initialize the Spark session with the settings outlined below.
Initialize the Spark session by entering these settings into the R submit script immuta.spark.acl.assume.not.privileged="true"
and spark.hadoop.immuta.databricks.config.update.service.enabled="false"
.
This will enable the R script to access Immuta data sources, scratch paths, and workspace tables.
Once the script is written, upload the script to a location in dbfs/S3/ABFS
to give the Databricks cluster access to it.
spark submit
JobTo create the R spark-submit
job,
Go to the Databricks jobs page.
Create a new job, and select Configure spark-submit.
Set up the parameters:
Note: The path dbfs:/path/to/script.R
can be in S3 or ABFS (on Azure Databricks), assuming the cluster is configured with access to that path.
Edit the cluster configuration, and change the Databricks Runtime to be a supported version (5.5, 6.4, 7.3, or 7.4).
Configure the Environment Variables section as you normally would for an .
Before you can run spark-submit
jobs on Databricks you must initialize the Spark session with the settings outlined below.
Configure the Spark session with immuta.spark.acl.assume.not.privileged="true"
and spark.hadoop.immuta.databricks.config.update.service.enabled="false"
.
Note: Stop your Spark session (spark.stop()
) at the end of your job or the cluster will not terminate.
The spark submit job needs to be launched using a different classloader which will point at the designated user JARs directory. The following Scala template can be used to handle launching your submit code using a separate classloader:
spark-submit
JobTo create the Scala spark-submit
job,
Build and upload your JAR to dbfs/S3/ABFS
where the cluster has access to it.
Select Configure spark-submit, and configure the parameters:
Note: The fully-qualified class name of the class whose main
function will be used as the entry point for your code in the --class
parameter.
Note: The path dbfs:/path/to/code.jar
can be in S3 or ABFS (on Azure Databricks) assuming the cluster is configured with access to that path.
Edit the cluster configuration, and change the Databricks Runtime to a supported version (5.5, 6.4, 7.3, or 7.4).
Include IMMUTA_INIT_ADDITIONAL_JARS_URI=dbfs:/path/to/code.jar
in the "Environment Variables" (where dbfs:/path/to/code.jar
is the path to your jar) so that the jar is uploaded to all the cluster nodes.
The user mapping works differently from notebooks because spark-submit
clusters are not configured with access to the Databricks SCIM API. The cluster tags are read to get the cluster creator and match that user to an Immuta user.
Privileged users (Databricks Admins and Whitelisted Users) must be tied to an Immuta user and given access through Immuta to access data through spark-submit
jobs because the setting immuta.spark.acl.assume.not.privileged="true"
is used.
Currently when an API key is generated it invalidates the previous key. This can cause issues if a user is using multiple clusters in parallel, since each cluster will generate a new API key for that Immuta user. To avoid these issues, manually generate the API key in Immuta and set the immuta.api.key
on all the clusters or use a specified job user for the submit job.
Audience: System Administrators
Content Summary: This guide details the manual installation method for enabling native access to Databricks with Immuta policies enforced.
Prerequisites: Ensure your Databricks workspace, instance, and permissions meet the guidelines outlined in the .
Databricks Unity Catalog
If Unity Catalog is enabled in a Databricks workspace, you must use an Immuta cluster policy when you setup the integration to create an Immuta-enabled cluster.
The immuta_conf.xml
is no longer required.
The immuta_conf.xml
file that was previously used to configure the native Databricks integration is no longer required to install Immuta, so it is no longer staged as a deployment artifact. However, you can use if you wish to deploy an immuta_conf.xml
file to set properties.
The required Immuta base URL and Immuta system API key properties, along with any other valid properties, can still be specified as Spark environment variables or in the optional immuta_conf.xml
file. As before, if the same property is specified in both locations, the Spark environment variable takes precedence.
If you have an existing immuta_conf.xml
file, you can continue using it. However, it's recommended that you delete any default properties from the file that you have not explicitly overridden, or remove the file completely and rely on Spark environment variables. Either method will ensure that any property defaults changed in upcoming Immuta releases are propagated to your environment.
Spark Version
Use Spark 2 with Databricks Runtime prior to 7.x. Use Spark 3 with Databricks Runtime 7.x or later. Attempting to use an incompatible jar and Databricks Runtime will fail.
Navigate to the page. If you are prompted to log in and need basic authentication credentials, contact your Immuta support professional.
Navigate to the Databricks folder for your Immuta version. Ex: https://archives.immuta.com/hadoop/databricks/2024.1.13/
.
Download the .jar file (Immuta plugin) as well as the other scripts listed below, which will load the plugin at cluster startup.
The immuta-benchmark-suite.dbc
is a collection of notebooks packaged as a .dbc file. After you have added cluster policies to your cluster, you can import this file into Databricks to run performance tests and compare a regular Databricks cluster to one protected by Immuta. Detailed instructions are available in the first notebook, which will require an Immuta and non-Immuta cluster to generate test data and perform queries.
Specify the following properties as Spark environment variables or in the optional immuta_conf.xml
file. If the same property is specified in both locations, the Spark environment variable takes precedence. The variable names are the config names in all upper case with _
instead of .
. For example, to set the value of immuta.base.url
via an environment variable, you would set the following in the Environment Variables
section of cluster configuration: IMMUTA_BASE_URL=https://immuta.mycompany.com
immuta.system.api.key
: Obtain this value from the under HDFS > System API Key. You will need to be a user with the APPLICATION_ADMIN
role to complete this action. Warning: Generating a key will destroy any previously generated HDFS keys. This will cause previously integrated HDFS systems to lose access to your Immuta console. The key will only be shown once when generated.
immuta.base.url
: The full URL for the target Immuta instance Ex: https://immuta.mycompany.com
.
immuta.user.mapping.iamid
: If users authenticate to Immuta using an IAM different from Immuta's built-in IAM, you need to update the configuration file to reflect the ID of that IAM. The IAM ID is shown within the Immuta App Settings page within the Identity Management section. See for more details.
Environment Variables with Google Cloud Platform
Do not use environment variables to set sensitive properties when using Google Cloud Platform. Set them directly in immuta_conf.xml
.
When configuring the Databricks cluster, a path will need to be provided to each of the artifacts downloaded/created in the previous step. To do this, those artifacts must be hosted somewhere that your Databricks instance can access. The following methods can be used for this step:
These artifacts will be downloaded to the required location within the clusters file-system by the init script downloaded in the previous step. In order for the init script to find these files, a URI will have to be provided through environment variables configured on the cluster. Each method's URI structure and setup is explained below.
URI Structure: s3://[bucket]/[path]
Upload the configuration file, JSON file, and JAR file to an S3 bucket that the role from step 1 has access to.
If you wish to authenticate using access keys, add the following items to the cluster's environment variables:
If you've assumed a role and received a session token, that can be added here as well:
URI Structure: abfs(s)://[container]@[account].dfs.core.windows.net/[path]
Environment Variables:
If you want to authenticate using an account key, add the following to your cluster's environment variables:
If you want to authenticate using an Azure SAS token, add the following to your cluster's environment variables:
URI Structure: adl://[account].azuredatalakestore.net/[path]
Environment Variables:
If authenticating as a Microsoft Entra ID user,
If authenticating using a service principal,
URI Structure: http(s)://[host](:port)/[path]
Artifacts are available for download from Immuta using basic authentication. Your basic authentication credentials can be obtained from your Immuta support professional.
DBFS does not support access control. Any Databricks user can access DBFS via the Databricks command line utility. Files containing sensitive materials (such as Immuta API keys) should not be stored there in plain text. Use other methods described herein to properly secure such materials.
URI Structure: dbfs:/[path]
Since any user has access to everything in DBFS:
The artifacts can be stored anywhere in DBFS.
It's best to have a cluster-specific place for your artifacts in DBFS if you are testing to avoid overwriting or reusing someone else's artifacts accidentally.
Databricks secrets can be used in the Environment Variables
configuration section for a cluster by referencing the secret path rather than the actual value of the environment variable. For example, if a user wanted to make the following value secret
they could instead create a Databricks secret and reference it as the value of that variable. For instance, if the secret scope my_secrets
was created, and the user added a secret with the key my_secret_env_var
containing the desired sensitive environment variable, they would reference it in the Environment Variables
section:
Then, at runtime, {{secrets/my_secrets/my_secret_env_var}}
would be replaced with the actual value of the secret if the owner of the cluster has access to that secret.
Best Practice: Replace Sensitive Variables with Secrets
Immuta recommends that ANY SENSITIVE environment variables listed below in the various artifact deployment instructions be replaced with secrets.
Cluster creation in an Immuta-enabled organization or Databricks workspace should be limited to administrative users to avoid allowing users to create non-Immuta enabled clusters.
Select the Custom Access mode.
Opt to adjust the Autopilot Options and Worker Type settings. The default values provided here may be more than what is necessary for non-production or smaller use-cases. To reduce resource usage you can enable/disable autoscaling, limit the size and number of workers, and set the inactivity timeout to a lower value.
In the Advanced Options section, click the Instances tab.
Click the Spark tab. In Spark Config field, add your configuration.
Cluster Configuration Requirements:
Click the Init Scripts tab and set the following configurations:
Destination: Specify the service you used to host the Immuta artifacts.
File Path: Specify the full URI to the immuta_cluster_init_script.sh
.
Add the new key/value to the configuration.
Click the Permissions tab and configure the following setting:
Who has access: Users or groups will need to have the permission Can Attach To to execute queries against Immuta configured data sources.
(Re)start the cluster.
As mentioned in the "Environment Variables" section of the cluster configuration, there may be some cases where it is necessary to add sensitive configuration to SparkSession.sparkContext.hadoopConfiguration
in order to read the data composing Immuta data sources.
As an example, when accessing external tables stored in Azure Data Lake Gen 2, Spark must have credentials to access the target containers/filesystems in ADLg2, but users must not have access to those credentials. In this case, an additional configuration file may be provided with a storage account key that the cluster may use to access ADLg2.
The additional configuration file looks very similar to the Immuta Configuration file referenced above. Some example configuration files for accessing different storage layers are below.
IAM Role for S3 Access
ADL Prefix
Prior to Databricks Runtime version 6, the following configuration items should have a prefix of dfs.adls
rather than fs.adl
When the Immuta enabled Databricks cluster has been successfully started, users will see a new database labeled "immuta". This database is the virtual layer provided to access data sources configured within the connected Immuta instance.
Before users can query an Immuta data source, an administrator must give the user Can Attach To
permissions on the cluster and GRANT
the user access to the immuta
database.
The following SQL query can be run as an administrator within a journal to give the user access to "Immuta":
By default, the IAM used to map users between Databricks and Immuta is the BIM (Immuta's internal IAM). The Immuta Spark plugin will check the Databricks username against the username within the BIM to determine access. For a basic integration, this means the users email address in Databricks and the connected Immuta instance must match.
Audience: System Administrators
Content Summary: This page describes the Python & SQL & R cluster policy.
Additional Overhead
In relation to the Python & SQL cluster policy, this configuration trades some additional overhead for added support of the R language.
In this configuration, you are able to rely on the Databricks-native security controls. The key security control here is the enablement of process isolation. This prevents users from obtaining unintentional access to the queries of other users. In other words, masked and filtered data is consistently made accessible to users in accordance with their assigned attributes.
Like the Python & SQL configuration, Py4j security is enabled for the Python & SQL & R configuration. However, because R has been added Immuta enables the SecurityManager, in addition to Py4j security, to provide more security guarantees. For example, by default all actions in R execute as the root user; among other things, this permits access to the entire filesystem (including sensitive configuration data), and, without iptable restrictions, a user may freely access the cluster’s cloud storage credentials. To address these security issues, Immuta’s initialization script wraps the R and Rscript binaries to launch each command as a temporary, non-privileged user with limited filesystem and network access and installs the Immuta SecurityManager, which prevents users from bypassing policies and protects against the above vulnerabilities from within the JVM.
Consequently, the cost of introducing R is that the SecurityManager incurs a small increase in performance overhead; however, average latency will vary depending on whether the cluster is homogeneous or heterogeneous. (In homogeneous clusters, all users are at the same level of groups/authorizations; this is enforced externally, rather than directly by Immuta.)
Many Python ML classes (such as LogisticRegression
, StringIndexer
, and DecisionTreeClassifier
) and dbutils.fs are unfortunately not supported with Py4J security enabled. Users will also be to use the Databricks Connect client library.
When users install third-party Java/Scala libraries, they will be denied access to sensitive resources by default. However, cluster administrators can specify which of the installed Databricks libraries should be by Immuta.
For full details on Databricks’ best practices in configuring clusters, please read their .
Audience: Databricks Users
Content Summary: This page describes Immuta's support of .
CDF shows the row-level changes between versions of a Delta table. The changes displayed include row data and metadata that indicates whether the row was inserted, deleted, or updated.
Immuta does not support applying policies to the changed data, and the CDF cannot be read for data source tables if the user does not have access to the raw data in Databricks. However, the CDF can be read if the querying user is allowed to read the raw data and one of the following statements is true:
the table is in the current workspace,
the table is in a scratch path,
non-Immuta reads are enabled AND the table does not intersect with a workspace under which the current user is not acting, or
non-Immuta reads are enabled AND the table is not part of an Immuta data source.
There are no configuration changes necessary to use this feature.
Immuta does not support reading changes in .
Audience: System Administrators
Content Summary: This page describes the Scala cluster policy.
Scala Clusters
This configuration is for Scala-only clusters.
Where Scala language support is needed, this configuration can be used in the Custom .
According to Databricks’ cluster type support documentation, Scala clusters are intended for . However, nothing inherently prevents a Scala cluster from being configured for multiple users. Even with the Immuta SecurityManager enabled, there are limitations to user isolation within a Scala job.
For a secure configuration, it is recommended that clusters intended for Scala workloads are limited to Scala jobs only and are made homogeneous through the use of or externally via convention/cluster ACLs. (In homogeneous clusters, all users are at the same level of groups/authorizations; this is enforced externally, rather than directly by Immuta.)
For full details on Databricks’ best practices in configuring clusters, please read their .
Audience: Databricks Administrators
Content Summary: This page provides an overview of Immuta's feature and support of .
The Immuta security manager blocks users from executing code that could allow them to gain access to sensitive data by only allowing select code paths to access sensitive files and methods. These select code paths provide Immuta's code access to sensitive resources while blocking end users from these sensitive resources directly.
Similarly, when users install third-party libraries those libraries will be denied access to sensitive resources by default. However, cluster administrators can specify which of the installed Databricks libraries should be .
The trusted libraries feature allows Databricks cluster administrators to avoid Immuta security manager errors when using third-party libraries. An administrator can specify an installed library as "trusted," which will enable that library's code to bypass the Immuta security manager. Contact your Immuta support professional for custom security configurations for your libraries.
This feature does not impact Immuta's ability to apply policies; trusting a library only allows code through what previously would have been blocked by the security manager.
Security Vulnerability
Using this feature could create a security vulnerability, depending on the third-party library. For example, if a library exposes a public method named readProtectedFile
that displays the contents of a sensitive file, then trusting that library would allow end users access to that file. Work with your Immuta support professional to determine if the risk does not apply to your environment or use case.
Databricks Libraries API
Installing trusted libraries outside of the Databricks Libraries API (e.g., ADD JAR ...
) is not supported.
The following types of libraries are supported when installing a third-party library using the Databricks UI or the Databricks Libraries API:
Library source
is Upload
, DBFS
or DBFS/S3
and the Library Type
is Jar
.
Library source
is Maven
.
Databricks installs libraries right after a cluster has started, but there is no guarantee that library installation will complete before a user's code is executed. If a user executes code before a trusted library installation has completed, Immuta will not be able to identify the library as trusted. This can be solved by either
waiting for library installation to complete before running any third-party library commands or
executing a Spark query. This will force Immuta to wait for any trusted Immuta libraries to complete installation before proceeding.
When installing a library using Maven as a library source, Databricks will also install any transitive dependencies for the library. However, those transitive dependencies are installed behind the scenes and will not appear as installed libraries in either the Databricks UI or using the Databricks Libraries API. Only libraries specifically listed in the IMMUTA_SPARK_DATABRICKS_TRUSTED_LIB_URIS
environment variable will be trusted by Immuta, which does not include installed transitive dependencies. This effectively means that any code paths that include a class from a transitive dependency but do not include a class from a trusted third-party library can still be blocked by the Immuta security manager. For example, if a user installs a trusted third-party library that has a transitive dependency of a file-util
library, the user will not be able to directly use the file-util
library to read a sensitive file that is normally protected by the Immuta security manager.
In many cases, it is not a problem if dependent libraries aren't trusted because code paths where the trusted library calls down into dependent libraries will still be trusted. However, if the dependent library needs to be trusted, there is a workaround:
Add the transitive dependency jar paths to the IMMUTA_SPARK_DATABRICKS_TRUSTED_LIB_URIS
environment variable. In the driver log4j
logs, Databricks outputs the source jar locations when it installs transitive dependencies. In the cluster driver logs, look for a log message similar to the following:
In the above example, where slf4j
is the transitive dependency, you would add the path dbfs:/FileStore/jars/maven/org/slf4j/slf4j-api-1.7.25.jar
to the IMMUTA_SPARK_DATABRICKS_TRUSTED_LIB_URIS
environment variable and restart your cluster.
In case of failure, check the driver logs for details. Some possible causes of failure include
One of the Immuta configured trusted library URIs does not point to a Databricks library. Check that you have configured the correct URI for the Databricks library.
For trusted Maven artifacts, the URI must follow this format: maven:/group.id:artifact-id:version
.
Databricks failed to install a library. Any Databricks library installation errors will appear in the Databricks UI under the Libraries tab.
No additional configuration is needed to enable this feature. Users only need to be running on clusters with DBR 8+.
Audience: System Administrators
Content Summary: This page describes the sparklyr cluster policy.
Single-User Clusters Recommended
Like Databricks, Immuta recommends single-user clusters for sparklyr when user isolation is required. A single-user cluster can either be a job cluster or a cluster with credential passthrough enabled. Note: spark-submit jobs are not currently supported.
Two cluster types can be configured with sparklyr: Single-User Clusters (recommended) and Multi-User Clusters (discouraged).
: Credential Passthrough (required on Databricks) allows a single-user cluster to be created. This setting automatically configures the cluster to assume the role of the attached user when reading from storage (S3). Because Immuta requires that raw data is readable by the cluster, the instance profile associated with the cluster should be used rather than a role assigned to the attached user.
: Because Immuta cannot guarantee user isolation in a multi-user sparklyr cluster, it is not recommended to deploy a multi-user cluster. To force all users to act under the same set of attributes, groups, and purposes with respect to their data access and eliminate the risk of a data leak, all sparklyr multi-user clusters must be equalized either by convention (all users able to attach to the cluster have the same level of data access in Immuta) or by configuration (detailed below).
In addition to the configuration for an Immuta cluster with R, add this environment variable to the Environment Variables section of the cluster:
This configuration makes changes to the iptables rules on the cluster to allow the sparklyr client to connect to the required ports on the JVM used by the sparklyr backend service.
Install and load libraries into a notebook. Databricks includes the stable version of sparklyr, so library(sparklyr)
in an R notebook is sufficient, but you may opt to install the latest version of sparklyr from CRAN
. Additionally, loading library(DBI)
will allow you to execute SQL queries.
Set up a sparklyr connection:
Pass the connection object to execute queries:
Add the following items to the Spark Config section of the cluster:
The trustedFileSystems
setting is required to allow Immuta’s wrapper FileSystem (used in conjunction with the ImmutaSecurityManager
for data security purposes) to be used with credential passthrough. Additionally, the InstanceProfileCredentialsProvider
must be configured to continue using the cluster’s instance profile for data access, rather than a role associated with the attached user.
Immuta Discourages Deploying Multi-User Clusters with sparklyr Configuration
It is possible, but not recommended, to deploy a multi-user cluster sparklyr configuration. Immuta cannot guarantee user isolation in a multi-user sparklyr configuration.
The configurations in this section enable sparklyr, require project equalization, map sparklyr sessions to the correct Immuta user, and prevent users from accessing Immuta native workspaces.
Add the following environment variables to the Environment Variables section of your cluster configuration:
Add the following items to the Spark Config section:
Immuta’s integration with sparklyr does not currently support
spark-submit jobs,
UDFs, or
Databricks Runtimes 5, 6, or 7.
Audience: Data Users and System Administrators
Content Summary: This page provides an explanation and solution for this common Databricks error.
Error Message: py4j.security.Py4JSecurityException: Constructor <> is not whitelisted
Explanation: This error indicates you are being blocked by Py4j security rather than the Immuta Security Manager. is strict and generally ends up blocking many ML libraries.
Solution: Turn off Py4j security on the offending cluster by setting IMMUTA_SPARK_DATABRICKS_PY4J_STRICT_ENABLED=false
in the environment variables section. Additionally, because there are limitations to the security mechanisms Immuta employs on-cluster when Py4j security is disabled, ensure that all users on the cluster have the same level of access to data, as users could theoretically see (policy-enforced) data that other users have queried.
Audience: System Administrators
Content Summary: It is most secure to leverage an equalized project when working in a Scala cluster; however, it is not required to limit Scala to equalized projects. This document outlines security recommendations for Scala clusters and discusses the security risks involved when equalized projects are not used.
Language Support
R and Scala are both supported, but require advanced configuration; work with your Immuta support professional to use these languages.
There are limitations to isolation among users in Scala jobs on a Databricks cluster, even when using Immuta’s SecurityManager. When data is broadcast, cached (spilled to disk), or otherwise saved to SPARK_LOCAL_DIR
, it's impossible to distinguish between which user’s data is composed in each file/block. If you are concerned about this vulnerability, Immuta suggests that Scala clusters
be limited to Scala jobs only.
use project equalization, which forces all users to act under the same set of attributes, groups, and purposes with respect to their data access.
When data is read in Spark using an Immuta policy-enforced plan, the masking and redaction of rows is performed at the leaf level of the physical Spark plan, so a policy such as "Mask using hashing the column social_security_number
for everyone" would be implemented as an expression on a project node right above the FileSourceScanExec/LeafExec
node at the bottom of the plan. This process prevents raw data from being shuffled in a Spark application and, consequently, from ending up in SPARK_LOCAL_DIR
.
This policy implementation coupled with an equalized project guarantees that data being dropped into SPARK_LOCAL_DIR
will have policies enforced and that those policies will be homogeneous for all users on the cluster. Since each user will have access to the same data, if they attempt to manually access other users' cached/spilled data, they will only see what they have access to via equalized permissions on the cluster. If project equalization is not turned on, users could dig through that directory and find data from another user with heightened access, which would result in a data leak.
To require that Scala clusters be used in equalized projects and avoid the risk described above, change the immuta.spark.require.equalization
value to true
in your Immuta configuration file when you spin up Scala clusters:
Once this configuration is complete, users on the cluster will need to switch to an Immuta equalized project before running a job. (Remember that when working under an Immuta Project, only tables within that project can be seen.) Once the first job is run using that equalized project, all subsequent jobs, no matter the user, must also be run under that same equalized project. If you need to change a cluster's project, you must restart the cluster.
Audience: System Administrators
Content Summary: This page describes the Python & SQL cluster policy.
Performance
This is the most performant policy configuration.
In this configuration, Immuta is able to rely on Databricks-native security controls, reducing overhead. The key security control here is the enablement of process isolation. This prevents users from obtaining unintentional access to the queries of other users. In other words, masked and filtered data is consistently made accessible to users in accordance with their assigned attributes. This Immuta cluster configuration relies on Py4J security being enabled.
Many Python ML classes (such as LogisticRegression
, StringIndexer
, and DecisionTreeClassifier
) and dbutils.fs are unfortunately not supported with Py4J security enabled. Users will also be to use the Databricks Connect client library. Additionally, only Python and SQL are available as supported languages.
For full details on Databricks’ best practices in configuring clusters, please read their .
Audience: System Administrators
Content Summary: This page describes ephemeral overrides for Databricks data sources.
Best Practices: Ephemeral Overrides
for clusters when using multiple workspaces and dedicate a single cluster to serve queries from Immuta in a single workspace.
If you use multiple E2 workspaces without disabling ephemeral overrides, avoid applying the where user row-level policy to data sources.
In Immuta, a Databricks data source is considered ephemeral, meaning that the compute resources associated with that data source will not always be available.
Ephemeral data sources allow the use of ephemeral overrides, user-specific connection parameter overrides that are applied to Immuta metadata operations and queries that the user runs through the Query Editor.
When a user runs a Spark job in Databricks, Immuta plugins automatically submit ephemeral overrides for that user to Immuta for all applicable data sources to use the current cluster as compute for all subsequent metadata operations for that user against the applicable data sources.
A user runs a query on cluster B.
The Immuta plugins on the cluster check if there is a source in the Metastore with a matching database, table name, and location for its underlying data. Note: If tables are dynamic or change over time, users can disable the comparison of the location of the underlying data by setting immuta.ephemeral.table.path.check.enabled
to false
; disabling allows users to avoid keeping the relevant data sources in Immuta up-to-date (which would require API calls and automation).
The Immuta plugins on the cluster detect that the user is subscribed to data sources 1, 2, and 3 and that data sources 1 and 3 are both present in the Metastore for cluster B, so the plugins submit ephemeral override requests for data sources 1 and 3 to override their connections with the HTTP path from cluster B.
Since data source 2 is not present in the Metastore, it is marked as a JDBC source.
If the user attempts to query data source 2 and they have not enabled JDBC sources, they will be presented with an error message telling them to do so:
com.immuta.spark.exceptions.ImmutaConfigurationException
: This query plan will cause data to be pulled over JDBC. This spark context is not configured to allow this. To enable JDBC setimmuta.enable.jdbc=true
in the spark context hadoop configuration.
Ephemeral overrides are enabled by default because Immuta must be aware of a cluster that is running to serve metadata queries. The operations that use the ephemeral overrides include
Visibility checks on the data source for a particular user. These checks assess how to apply row-level policies for specific users.
Stats collection triggered by a specific user.
Validating a custom WHERE clause policy against a data source. When owners or governors create custom WHERE clause policies, Immuta uses compute resources to validate the SQL in the policy. In this case, the ephemeral overrides for the user writing the policy are used to contact a cluster for SQL validation.
High Cardinality Column detection. Certain advanced policy types (e.g., minimization and randomized response) in Immuta require a High Cardinality Column, and that column is computed on data source creation. It can be recomputed on demand and, if so, will use the ephemeral overrides for the user requesting computation.
However, ephemeral overrides can be problematic in environments that have a dedicated cluster to handle maintenance activities, since ephemeral overrides can cause these operations to execute on a different cluster than the dedicated one.
To reduce the risk that a user has overrides set to a cluster (or multiple clusters) that aren't currently up,
direct all clusters' HTTP paths for overrides to a cluster dedicated for metadata queries or
disable overrides completely.
To disable ephemeral overrides, set immuta.ephemeral.host.override
in spark-defaults.conf
to false.
Example cluster | Databricks Runtime | Unity Catalog in Databricks | Databricks Spark integration | Databricks Spark with Unity Catalog support | Databricks Unity Catalog integration |
---|---|---|---|---|---|
The feature or integration is enabled.
The feature or integration is disabled.
You should register entire databases with Immuta and run jobs through the Python script provided during data source registration. Additionally, you should use a Databricks administrator account to register data sources with Immuta using the UI or API; however, you should not test Immuta policies using a Databricks administrator account, as they are able to bypass controls. See the page for more details.
A Databricks administrator can control who has access to specific tables in Databricks through Immuta or by . Data users will only see the immuta
database with no tables until they are granted access to those tables as Immuta data sources.
After data users have subscribed to data sources, administrators can apply fine-grained access controls, such as restricting rows or masking columns with advanced anonymization techniques, to manage what the users can see in each table. More details on the types of data policies can be found on page, including an .
Note: Immuta recommends building rather than Local Policies, as they allow organizations to easily manage policies as a whole and capture system state in a more deterministic manner.
Usernames in Immuta must match usernames in Databricks. It is best practice is to use the same identity manager for Immuta that you use for Databricks (Immuta supports . however, for Immuta SaaS users, it’s easiest to just ensure usernames match between systems.
An Immuta Application Administrator and registers available cluster policies Immuta generates.
A Data Owner . A Data Owner, Data Governor, or Administrator or user in Immuta.
A Databricks user who is subscribed to the data source in Immuta directly in their notebook or workspace.
Example cluster | Databricks Runtime | Unity Catalog in Databricks | Databricks Spark integration | Databricks Spark with Unity Catalog support | Databricks Unity Catalog integration |
---|
The feature or integration is enabled.
The feature or integration is disabled.
See the for known limitations.
: The steps to enable the integration with this method include
: The steps to enable the integration with this method include
Create a cluster in Databricks by following the .
IAM Role (AWS ONLY): Select the instance role you created for this cluster. (For access key authentication, you should instead use the environment variables listed in the section.)
.
When the Immuta-enabled Databricks cluster has been successfully started, Immuta will create an immuta
database, which allows Immuta to track Immuta-managed data sources separately from remote Databricks tables so that policies and other security features can be applied. However, users can query sources with their original database or table name without referencing the immuta
database. Additionally, when configuring a Databricks cluster you can hide immuta
from any calls to SHOW DATABASES
so that users aren't misled or confused by its presence. For more details, see the page.
See the for a detailed walkthrough of creating Databricks data sources in Immuta.
Below are example queries that can be run to obtain data from an Immuta-configured data source. Because Immuta supports raw tables in Databricks, you do not have to use Immuta-qualified table names in your queries like the first example. Instead, you can run queries like the second example, which does not reference the .
If your compliance requirements restrict users from changing projects within a session, you can block the use of Immuta's project UDFs on a Databricks Spark cluster. To do so, configure the immuta.spark.databricks.disabled.udfs
option as described on the .
There is an option of using the immuta.api.key
setting with an Immuta API key generated on the .
Host files in and provide access by the cluster
Host files in Gen 1 or Gen 2 and provide access by the cluster
Host files on an server accessible by the cluster
Host files in (Not recommended for production)
Create an instance profile for clusters by following .
Upload the configuration file, JSON file, and JAR file to an .
Upload the configuration file, JSON file, and JAR file to .
Upload the artifacts directly to using the .
It is important that non-administrator users on an Immuta-enabled Databricks cluster do not have access to view or modify Immuta configuration or the immuta-spark-hive.jar
file, as this would potentially pose a security loophole around Immuta policy enforcement. Therefore, use to apply environment variables to an Immuta-enabled cluster in a secure way.
Create a cluster in Databricks by following the .
IAM Role (AWS ONLY): Select the instance role you created for this cluster. (For access key authentication, you should instead use the environment variables listed in the section.)
In the Environment Variables section, add the environment variables necessary for your configuration. Remember that these variables should be as mentioned above.
To use an additional Hadoop configuration file, you will need to set the IMMUTA_INIT_ADDITIONAL_CONF_URI
environment variable referenced in the section to be the full URI to this file.
S3 can also be accessed using an IAM role attached to the cluster. See the for more details.
.
Below are example queries that can be run to obtain data from an Immuta-configured data source. Because Immuta supports raw tables in Databricks, you do not have to use Immuta-qualified table names in your queries like the first example. Instead, you can run queries like the second example, which does not reference the .
See the for a detailed walkthrough.
It is possible within Immuta to have multiple users share the same username if they exist within different IAMs. In this case, the cluster can be configured to lookup users from a specified IAM. To do this, the value of immuta.user.mapping.iamid
created and hosted in the previous steps must be updated to be the targeted IAM ID configured within the Immuta instance. The IAM ID can be found on the . Each Databricks cluster can only be mapped to one IAM.
For details about configuring trusted libraries, navigate to the .
Users on Databricks runtimes 8+ can manage notebook-scoped libraries with .
However, this functionality differs from Immuta's , and Python libraries are still not supported as trusted libraries. The Immuta Security Manager will deny the code of libraries installed with %pip
access to sensitive resources.
11.3 LTS | 2023.1 and newer |
10.4 LTS | 2022.2.x and newer |
7.3 LTS 9.1 LTS | 2021.5.x and newer |
Audience: System Administrators
Content Summary: This page outlines how to access DBFS in Databricks for non-sensitive data. Databricks Administrators should place the desired configuration in the Spark environment variables (recommended) or the
immuta_conf.xml
file (not recommended).
DBFS FUSE Mount Limitation
This feature cannot be used in environments with E2 Private Link enabled.
This feature (provided by Databricks) mounts DBFS to the local cluster filesystem at /dbfs
. Although disabled when using process isolation, this feature can safely be enabled if raw, unfiltered data is not stored in DBFS and all users on the cluster are authorized to see each other’s files. When enabled, the entirety of DBFS essentially becomes a scratch path where users can read and write files in /dfbs/path/to/my/file
as though they were local files.
For example,
In Python,
Note: This solution also works in R and Scala.
To enable the DBFS FUSE mount, set this configuration: immuta.spark.databricks.dbfs.mount.enabled=true
.
Mounting a Bucket
Users can mount additional buckets to DBFS that can also be accessed using the FUSE mount.
Mounting a bucket is a one-time action, and the mount will be available to all clusters in the workspace from that point on.
Mounting must be performed from a non-Immuta cluster.
Scratch paths will work when performing arbitrary remote filesystem operations with fs magic or Scala dbutils.fs functions. For example,
To support %fs magic and Scala DBUtils with scratch paths, configure
To use dbutils
in Python, set this configuration: immuta.spark.databricks.py4j.strict.enabled=false
.
This section illustrates the workflow for getting a file from a remote scratch path, editing it locally with Python, and writing it back to a remote scratch path.
Get the file from remote storage:
Make a copy if you want to explicitly edit localScratchFile
, as it will be read-only and owned by root:
Write the new file back to remote storage:
Audience: System Administrators
Content Summary: This document describes how to use an existing Hive external metastore instead of the built-in metastore.
Immuta supports the use of external metastores in local or remote mode , following the same configuration detailed in the Databricks documentation.
Download the metastore jars and point to them as specified in Databricks documentation. Metastore jars must end up on the cluster's local disk at this explicit path: /databricks/hive_metastore_jars
.
If using DBR 7.x with Hive 2.3.x, either
Set spark.sql.hive.metastore.version
to 2.3.7
and spark.sql.hive.metastore.jars
to builtin
or
Download the metastore jars and set spark.sql.hive.metastore.jars
to /databricks/hive_metastore_jars/*
as before.
To use AWS Glue Data Catalog as the metastore for Databricks, see the Databricks documentation.
This page outlines configuration details for Immuta-enabled Databricks clusters. Databricks Administrators should place the desired configuration in the Spark environment variables (recommended) or immuta_conf.xml
(not recommended).
This page contains references to the term whitelist, which Immuta no longer uses. When the term is removed from the software, it will be removed from this page.
Environment Variable Overrides
Properties in the config file can be overridden during installation using environment variables. The variable names are the config names in all upper case with _
instead of .
. For example, to set the value of immuta.base.url
via an environment variable, you would set the following in the Environment Variables
section of cluster configuration: IMMUTA_BASE_URL=https://immuta.mycompany.com
immuta.ephemeral.host.override
Default: true
Description: Set this to false
if ephemeral overrides should not be enabled for Spark. When true
, this will automatically override ephemeral data source httpPaths with the httpPath of the Databricks cluster running the user's Spark application.
immuta.ephemeral.host.override.httpPath
Description: This configuration item can be used if automatic detection of the Databricks httpPath should be disabled in favor of a static path to use for ephemeral overrides.
immuta.ephemeral.table.path.check.enabled
Default: true
Description: When querying Immuta data sources in Spark, the metadata from the Metastore is compared to the metadata for the target source in Immuta to validate that the source being queried exists and is queryable on the current cluster. This check typically validates that the target (database, table) pair exists in the Metastore and that the table’s underlying location matches what is in Immuta. This configuration can be used to disable location checking if that location is dynamic or changes over time. Note: This may lead to undefined behavior if the same table names exist in multiple workspaces but do not correspond to the same underlying data.
immuta.spark.acl.enabled
Default: true
Description: Immuta Access Control List (ACL). Controls whether Databricks users are blocked from accessing non-Immuta tables. Ignored if Databricks Table ACLs are enabled (i.e., spark.databricks.acl.dfAclsEnabled=true
).
immuta.spark.acl.whitelist
Description: Comma-separated list of Databricks usernames who may access raw tables when the Immuta ACL is in use.
immuta.spark.acl.privileged.timeout.seconds
Default: 3600
Description: The number of seconds to cache privileged user status for the Immuta ACL. A privileged Databricks user is an admin or is whitelisted in immuta.spark.acl.whitelist
.
immuta.spark.acl.assume.not.privileged
Default: false
Description: Session property that overrides privileged user status when the Immuta ACL is in use. This should only be used in R scripts associated with spark-submit jobs.
immuta.spark.audit.all.queries
Default: false
Description: Enables auditing all queries run on a Databricks cluster, regardless of whether users touch Immuta-protected data or not.
immuta.spark.databricks.allow.non.immuta.reads
Default: false
Description: Allows non-privileged users to SELECT
from tables that are not protected by Immuta. See Limited Enforcement in Databricks for details about this feature.
immuta.spark.databricks.allow.non.immuta.writes
Default: false
Description: Allows non-privileged users to run DDL commands and data-modifying commands against tables or spaces that are not protected by Immuta. See Limited Enforcement in Databricks for details about this feature.
immuta.spark.databricks.allowed.impersonation.users
Description: This configuration is a comma-separated list of Databricks users who are allowed to impersonate Immuta users.
immuta.spark.databricks.dbfs.mount.enabled
Default: false
Description: Exposes the DBFS FUSE mount located at /dbfs
. Granular permissions are not possible, so all users will have read/write access to all objects therein. Note: Raw, unfiltered source data should never be stored in DBFS.
immuta.spark.databricks.disabled.udfs
Description: Block one or more Immuta user-defined functions (UDFs) from being used on an Immuta cluster. This should be a Java regular expression that matches the set of UDFs to block by name (excluding the immuta
database). For example to block all project UDFs, you may configure this to be ^.*_projects?$
. For a list of functions, see the project UDFs page.
immuta.spark.databricks.filesystem.blacklist
Default: hdfs
Description: A list of filesystem protocols that this instance of Immuta will not support for workspaces. This is useful in cases where a filesystem is available to a cluster but should not be used on that cluster.
immuta.spark.databricks.filesystem.is3a.path.style.access.config
Default: false
Description: Enables the is3a
filesystem that retrieves your API key and communicates with Immuta as if it were talking directly to S3, allowing users to access object-backed data sources through Immuta's s3p
endpoint. This setting is only available on Databricks 7+ clusters.
immuta.spark.databricks.jar.uri
Default: file:///databricks/jars/immuta-spark-hive.jar
Description: The location of immuta-spark-hive.jar
on the filesystem for Databricks. This should not need to change unless a custom initialization script that places immuta-spark-hive in a non-standard location is necessary.
immuta.spark.databricks.local.scratch.dir.enabled
Default: true
Description: Creates a world-readable/writable scratch directory on local disk to facilitate the use of dbutils
and 3rd party libraries that may write to local disk. Its location is non-configurable and is stored in the environment variable IMMUTA_LOCAL_SCRATCH_DIR
. Note: Sensitive data should not be stored at this location.
immuta.spark.databricks.log.level
Default Value: INFO
Description: The SLF4J log level to apply to Immuta's Spark plugins.
immuta.spark.databricks.log.stdout.enabled
Default: false
Description: If true, writes logging output to stdout/the console as well as the log4j-active.txt
file (default in Databricks).
immuta.spark.databricks.py4j.strict.enabled
Default: true
Description: Disable to allow the use of the dbutils
API in Python. Note: This setting should only be disabled for customers who employ a homogeneous integration (i.e., all users have the same level of data access).
immuta.spark.databricks.scratch.database
Description: This configuration is a comma-separated list of additional databases that will appear as scratch databases when running a SHOW DATABASE
query. This configuration increases performance by circumventing the Metastore to get the metadata for all the databases to determine what to display for a SHOW DATABASE
query; it won't affect access to the scratch databases. Instead, use immuta.spark.databricks.scratch.paths
to control read and write access to the underlying database paths.
Additionally, this configuration will only display the scratch databases that are configured and will not validate that the configured databases exist in the Metastore. Therefore, it is up to the Databricks administrator to properly set this value and keep it current.
immuta.spark.databricks.scratch.paths
Description: Comma-separated list of remote paths that Databricks users are allowed to directly read/write. These paths amount to unprotected "scratch spaces." You can create a scratch database by configuring its specified location (or configure dbfs:/user/hive/warehouse/<db_name>.db
for the default location).
To create a scratch path to a location or a database stored at that location, configure
To create a scratch path to a database created using the default location,
immuta.spark.databricks.scratch.paths.create.db.enabled
Default: false
Description: Enables non-privileged users to create or drop scratch databases.
immuta.spark.databricks.single.impersonation.user
Default: false
Description: When true
, this configuration prevents users from changing their impersonation user once it has been set for a given Spark session. This configuration should be set when the BI tool or other service allows users to submit arbitrary SQL or issue SET commands.
immuta.spark.databricks.submit.tag.job
Default: true
Description: Denotes whether the Spark job will be run that "tags" a Databricks cluster as being associated with Immuta.
immuta.spark.databricks.trusted.lib.uris
Description: Databricks Trusted Libraries
immuta.spark.non.immuta.table.cache.seconds
Default: 3600
Description: The number of seconds Immuta caches whether a table has been exposed as a source in Immuta. This setting only applies when immuta.spark.databricks.allow.non.immuta.writes
or immuta.spark.databricks.allow.non.immuta.reads
is enabled.
immuta.spark.require.equalization
Default: false
Description: Requires that users act through a single, equalized project. A cluster should be equalized if users need to run Scala jobs on it, and it should be limited to Scala jobs only via spark.databricks.repl.allowedLanguages
.
immuta.spark.resolve.raw.tables.enabled
Default: true
Description: Enables use of the underlying database and table name in queries against a table-backed Immuta data source. Administrators or whitelisted users can set immuta.spark.session.resolve.raw.tables.enabled
to false
to bypass resolving raw databases or tables as Immuta data sources. This is useful if an admin wants to read raw data but is also an Immuta user. By default, data policies will be applied to a table even for an administrative user if that admin is also an Immuta user.
immuta.spark.session.resolve.raw.tables.enabled
Default: true
Description: Same as above, but a session property that allows users to toggle this functionality. If users run set immuta.spark.session.resolve.raw.tables.enabled=false
, they will see raw data only (not Immuta data policy-enforced data). Note: This property is not set in immuta_conf.xml
.
immuta.spark.show.immuta.database
Default: true
Description: This shows the immuta
database in the configured Databricks cluster. When set to false
Immuta will no longer show this database when a SHOW DATABASES
query is performed. However, queries can still be performed against tables in the immuta
database using the Immuta-qualified table name (e.g., immuta.my_schema_my_table
) regardless of whether or not this feature is enabled.
immuta.spark.version.validate.enabled
Default: true
Description: Immuta checks the versions of its artifacts to verify that they are compatible with each other. When set to true
, if versions are incompatible, that information will be logged to the Databricks driver logs and the cluster will not be usable. If a configuration file or the jar artifacts have been patched with a new version (and the artifacts are known to be compatible), this check can be set to false
so that the versions don't get logged as incompatible and make the cluster unusable.
immuta.user.context.class
Default: com.immuta.spark.OSUserContext
Description: The class name of the UserContext that will be used to determine the current user in immuta-spark-hive
. The default implementation gets the OS user running the JVM for the Spark application.
immuta.user.mapping.iamid
Default: bim
Description: Denotes which IAM in Immuta should be used when mapping the current Spark user's username to a userid in Immuta. This defaults to Immuta's internal IAM (bim
) but should be updated to reflect an actual production IAM.
Audience: System Administrators
Content Summary: This page describes how the Security Manager is disabled for Databricks clusters that do not allow R or Scala code to be executed. Databricks Administrators should place the desired configuration in the
immuta_conf.xml
file.
The Immuta Security Manager is an essential element of the Databricks deployment that ensures users can't perform unauthorized actions when using Scala and R, since those languages have features that allow users to circumvent policies without the Security Manager enabled. However, the Security Manager must inspect the call stack every time a permission check is triggered, which adds overhead to queries. To improve Immuta's query performance on Databricks, Immuta disables the Security Manager when Scala and R are not being used.
The cluster init script checks the cluster’s configuration and automatically removes the Security Manager configuration when
spark.databricks.repl.allowedlanguages
is a subset of {python, sql}
IMMUTA_SPARK_DATABRICKS_PY4J_STRICT_ENABLED
is true
When the cluster is configured this way, Immuta can rely on Databricks' process isolation and Py4J security to prevent user code from performing unauthorized actions.
Note: Immuta still expects the spark.driver.extraJavaOptions
and spark.executor.extraJavaOptions
to be set and pointing at the Security Manager.
Beyond disabling the Security Manager, Immuta will skip several startup tasks that are required to secure the cluster when Scala and R are configured, and fewer permission checks will occur on the Driver and Executors in the Databricks cluster, reducing overhead and improving performance.
There are still cases that require the Security Manager; in those instances, Immuta creates a fallback Security Manager to check the code path, so the IMMUTA_INIT_ALLOWED_CALLING_CLASSES_URI
environment variable must always point to a valid calling class file.
Databricks’ dbutils.fs
is blocked by their PY4J
security; therefore, it can’t be used to access scratch paths.
Databricks Unity Catalog is a shared metastore at the Databricks account level that streamlines management of multiple Databricks workspaces for users.
Immuta’s Databricks Spark integration with Unity Catalog support uses a custom Databricks plugin to enforce Immuta policies on a Databricks cluster with Unity Catalog enabled. This integration allows you to add your tables to the Unity Catalog metastore so that you can use the metastore from any workspace while protecting your data with Immuta policies.
Databricks clusters with Unity Catalog use the following hierarchy of data objects:
Metastore: Created at the account level and is attached to one or more Databricks workspaces. The metastore contains metadata of the configured tables available to query. All clusters on that workspace use the configured metastore and all workspaces that are configured to use a single metastore share those tables.
Catalog: A catalog sits on top of schemas (also called databases) and tables to manage permissions across a set of schemas.
Schema: Organizes tables and views.
Table: Tables can be managed or external tables.
For details about the Unity Catalog object model, search for Unity Catalog in Databricks documentation.
Immuta’s Databricks Spark integration with Unity Catalog support uses a custom Databricks plugin to enforce Immuta policies on a Databricks cluster with Unity Catalog enabled. For Immuta to see all relevant tables that have a data source mapped to them, Immuta requires a privileged metastore owner’s personal access token (PAT) from Databricks, and that metastore owner must have been granted access to all the relevant data. This token is stored encrypted to provide an Immuta-enabled Databricks cluster access to more data than a specific user on that cluster might otherwise have.
You must use an Immuta-provided cluster policy to start your Databricks cluster, as these cluster policies explicitly set the data security mode to the Custom setting that allows Immuta to enforce policies on top of Unity Catalog and add Unity Catalog support to the cluster. Once your configuration is complete, policy enforcement will be the same as the policy enforcement for the Databricks Spark integration.
For configuration instructions, see the Configure Databricks Spark Integration with Unity Catalog Support guide.
The Unity Catalog data object model introduces a 3-tiered namespace, as outlined above. Consequently, your Databricks tables registered as data sources in Immuta will now reference the catalog, schema (also called a database), and the table.
If a Databricks table is not a Delta table (if it is an ORC, Parquet, or other file format), it must be an external table. This is a Databricks Unity Catalog restriction and is not related to Immuta. See the Databricks documentation for details about creating these objects to allow external locations to be used.
External locations and storage credentials must be configured correctly on Immuta-enabled clusters to allow tables to be created in a non-managed path. Immuta does not control access to storage credentials or external locations, and a user will have the same level of access to these on an Immuta-enabled cluster as they do on a non-Immuta enabled cluster.
Scratch paths are locations in storage that users can read and write to without Immuta policies applied. Immuta's support for scratch paths in Unity Catalog is designed to work with external locations.
You must configure external locations for any scratch path and grant those locations to the metastore owner user being used to connect Immuta. Creating a database in a scratch location in an Immuta-enabled cluster with Unity Catalog differs from how it is supported on a non-Immuta cluster with Unity Catalog; on a non-Immuta cluster, a database will not have a location if it is created against a catalog other than the legacy hive_metastore
.
Immuta requires the database location to be specified in the create database call on an Immuta-enabled cluster so that Immuta can validate whether the read or write is permitted, as illustrated in the example below:
For configuration instructions, see the Configure Scratch Paths guide.
The data flow for Unity Catalog is the same as the data flow for the Databricks Spark integration.
The only change is that Databricks metadata is saved in Unity Catalog at the account level, not the workspace level.
Databricks Unity Catalog is a shared metastore at the Databricks account level that streamlines management of multiple Databricks workspaces for users.
Immuta’s Databricks Spark integration with Unity Catalog support uses a custom Databricks plugin to enforce Immuta policies on a Databricks cluster with Unity Catalog enabled. This integration provides a pathway for you to add your tables to the Unity Catalog metastore so that you can use the metastore from any workspace while protecting your data with Immuta policies.
Databricks Runtime 11.3.
Unity Catalog enabled on your Databricks cluster.
Unity Catalog metastore created and attached to a Databricks workspace.
The metastore owner you are using to manage permissions has been granted access to all catalogs, schemas, and tables that will be protected by Immuta. Data protected by Immuta should only be granted to privileged users in Unity Catalog so that the only view of that data is through an Immuta-enabled cluster.
You have generated a personal access token for the metastore owner that Immuta can use to read data in Unity Catalog.
You do not plan to use non-Unity Catalog enabled clusters with Immuta data sources. Once enabled, all access to data source tables must be on Databricks clusters with Unity Catalog enabled on runtime 11.3.
Configure your cluster to register data in Immuta.
Register Unity Catalog tables as Immuta data sources.
Build policies in Immuta to restrict access to data.
Deprecation notice
Support for this integration has been deprecated. This integration will be removed in the 2024.2 LTS release.
Enabling Unity Catalog
The integration cannot be disabled once enabled, as it will permanently migrate all data sources to support the additional Unity Catalog controls and hierarchy. Unity Catalog support in Immuta is enabled globally across all Databricks data sources and integrations.
Databricks Runtime 11.3.
Unity Catalog enabled on your Databricks cluster.
Unity Catalog metastore created and attached to a Databricks workspace.
The metastore owner you are using to manage permissions has been granted access to all catalogs, schemas, and tables that will be protected by Immuta. Data protected by Immuta should only be granted to privileged users in Unity Catalog so that the only view of that data is through an Immuta-enabled cluster.
You have generated a personal access token for the metastore owner that Immuta can use to read data in Unity Catalog.
You do not plan to use non-Unity Catalog enabled clusters with Immuta data sources. Once enabled, all access to data source tables must be on Databricks clusters with Unity Catalog enabled on runtime 11.3.
In Unity Catalog, catalogs manage permissions across a set of databases.
Create a new catalog on a non-Immuta cluster as the metastore admin, who is tied to a specific metastore attached to one or more Databricks workspaces. That way, the catalog will be owned by the metastore admin, which gives broad permissions to grant or revoke objects in the catalog to other users. If this catalog is intended to be protected by Immuta, the data should not be granted to other users besides the metastore admin.
You can opt to set the default catalog for queries run without explicitly specifying the catalog for a table by adding the following Spark configuration to your Databricks cluster:
This configuration does not limit the cluster to only using this catalog; it merely sets the default for queries run without explicitly specifying the catalog for a table.
Click the App Settings icon in the left sidebar.
Scroll to the Global Integration Settings section and check the Enable Databricks Unity Catalog support in Immuta checkbox.
Complete the following fields:
Workspace Host Name: The hostname (also known as the instance name) of a Databricks workspace instance on an account you want to connect to Immuta. This Databricks workspace is used to run short duration Databricks jobs so that Immuta can pull a token for the metastore owner.
Databricks Account Administrator Personal Access Token: Immuta requires you to provide a personal access token of a Databricks metastore administrator so that Immuta can protect all the data sources available. Databricks metastore administrators are set by changing the owner of a metastore in the account console (or using DDL statements by an account-level administrator). Metastores can be owned by a group that enabled more than one user to be an owner.
Schedule: Immuta uses the administrator token to keep the Immuta-enabled clusters synchronized and needs to periodically refresh it to ensure that the cluster does not use an expired token. This schedule is in cron syntax and will be used to launch the synchronization job.
The default value for this runs the token sync job at midnight daily. This cadence should be sufficient for most Unity Catalog configurations; however, if the timing of the job is problematic you can adjust the time of day to run at a more convenient time.
Token Sync Retries: The number of attempts Immuta will perform to re-request the token. The default value should work for most systems, but in environments with networking or load issues consider increasing this number.
Save the configuration.
After saving the configuration, Immuta will be configured to use Unity Catalog data sources and will automatically sync the Databricks metastore administrator API token, which is required for the integration to correctly view and apply policies to any data source in Databricks.
Check that your token sync job was correctly run in Databricks. Navigate to Workflows and click the Job runs tab. Search for a job that starts with Immuta Unity Token Sync.
If the token sync fails, there will be log messages in the web service logs. These should be discoverable in the event that the connection to Databricks is not functioning. In the event that the token is not synchronized correctly, the following error will appear when performing actions in Databricks:
If the token expires, the following error will appear when performing actions on any Immuta-enabled Databricks cluster: ImmutaException: 403: Invalid access token.
In this case, you can re-run the token sync job by modifying the schedule for token synchronization on the App Settings page. When the configuration is saved, the token synchronization job will run again immediately (regardless of schedule) and will refresh the token. Consider shortening the window between token synchronization jobs by editing the schedule if you see this error.
If you already have a Databricks Spark integration configured, follow the Enable Unity Catalog Support for an Existing Databricks Spark Integration guide.
In addition to supporting direct file reads through workspace and scratch paths, Immuta allows direct file reads in Spark for file paths. As a result, users who prefer to interact with their data using file paths or who have existing workflows revolving around file paths can continue to use these workflows without rewriting those queries for Immuta.
When reading from a path in Spark, the Immuta Databricks plugin queries the Immuta Web Service to find Databricks data sources for the current user that are backed by data from the specified path. If found, the query plan maps to the Immuta data source and follows existing code paths for policy enforcement.
Spark Direct File Reads in EMR
EMR uses the same integration as Databricks, but you will need to use the immuta
SparkSession just as you normally would to interact with Immuta data sources.
For example, instead of spark.read.format("parquet").load("s3:/my_bucket/path/to/my_parquet_table/partition_column=01/my_file.parquet")
, use immuta.read.format("parquet").load("s3:/my_bucket/path/to/my_parquet_table/partition_column=01/my_file.parquet")
.
Users can read data from individual parquet files in a sub-directory and partitioned data from a sub-directory (or by using a where
predicate). Use the tabs below to view examples of reading data using these methods.
Read Data from an Individual Parquet File
To read from an individual file, load a partition file from a sub-directory:
Read Partitioned Data from a Sub-Directory
To read partitioned data from a sub-directory, load a parquet partition from a sub-directory:
Alternatively, load a parquet partition using a where
predicate:
Direct file reads in Spark are also supported for object-backed Immuta data sources (such as S3 or Azure Blob data sources) using the is3a file system
:
Direct file reads for Immuta data sources only apply to table-backed Immuta data sources, not data sources created from views or queries.
If more than one data source has been created for a path, Immuta will use the first valid data source it finds. It is therefore not recommended to use this integration when more than one data source has been created for a path.
On Databricks, multiple input paths are supported as long as they belong to the same data source. However, for EMR only a single input path is supported.
CSV-backed tables are not currently supported.
Loading a delta
partition from a sub-directory is not recommended by Spark and is not supported in Immuta. Instead, use a where
predicate:
Legacy Metastore
If the database or table is created in the legacy metastore (hive_metastore
), you don't need a storage credential or an external location, but the cluster will need the correct credentials configured if the path is in remote storage.
Immuta's support for scratch paths in Unity Catalog works with external locations.
Grant those locations to the metastore administrator user being used to connect Immuta.
The following example shows creating external locations using the preconfigured storage credential cred
that configures the grants for a metastore admin admin@company.com
:
Immuta requires the database location to be specified in the create database call on an Immuta-enabled cluster so that Immuta can validate the read or write is permitted. For example,
Immuta clusters use the configured metastore owner personal access token (PAT) to interact with the Unity Catalog metastore. Before registering the table as a data source in Immuta, the catalog, schema, and table being registered must be granted to the configured Unity Catalog metastore owner using one of two methods so that the table is visible to Immuta:
automatically grant access to everything with Privilege Model 1.0. Immuta recommends upgrading the Privilege Model for Unity Catalog to 1.0. This upgrade allows administrators and owners to quickly grant access to everything in a given catalog or schema using a single grant statement. See the Databricks documentation for instructions on enabling Privilege Model 1.0.
Automatically grant select access to everything in a catalog by running the SQL statement below as the metastore owner or catalog owner:
If you are not using Privilege Model 1.0, manually grant access to specific tables by running the SQL statements below as the administrator or table owner:
To register a Databricks table as an Immuta data source, Immuta requires a running Databricks cluster that it can use to determine the schema and metadata of the table in Databricks. This cluster can be either
a non-Immuta cluster: Use a non-Immuta cluster if you have over 1,000 tables to register as Immuta data sources. This is the fastest and least error-prone method to add many data sources at a time.
an Immuta-enabled cluster: Use an Immuta-enabled cluster if you have a few tables to register as Immuta data sources.
Limited enforcement (available until protected by policy access model) is not supported
You must set IMMUTA_SPARK_DATABRICKS_ALLOW_NON_IMMUTA_READS
and IMMUTA_SPARK_DATABRICKS_ALLOW_NON_IMMUTA_WRITES
to false
in your cluster policies manually or by selecting Protected until made available by policy in the Databricks integration section of the App Settings page. See the Databricks Spark integration with Unity Catalog support limitations for details.
Once your cluster is running,
Register your data from your non-Immuta or Immuta-enabled cluster.
If you used a non-Immuta cluster, convert the cluster to an Immuta cluster with Immuta cluster policies once data sources have been created.
Note: When the Unity Catalog integration is enabled, a schema must be specified when registering data sources backed by tables in the legacy hive_metastore
.
Existing Data Sources
Existing data sources will reference the default catalog, hive_metastore
, once Unity Catalog is enabled. However, this default catalog will not be used when you create new data sources.
If you already have an Immuta Databricks Spark integration configured, follow the steps below to enable Unity Catalog support in Immuta.
Enable Unity Catalog support on the App Settings page.
Re-push cluster policies to your Databricks cluster. Note that you must set IMMUTA_SPARK_DATABRICKS_ALLOW_NON_IMMUTA_READS
and IMMUTA_SPARK_DATABRICKS_ALLOW_NON_IMMUTA_WRITES
to false
in your cluster policies manually or by selecting Protected until made available by policy in the Databricks integration section of the App Settings page. See the Databricks Spark integration with Unity Catalog support limitations for details.
Re-start your Databricks cluster with the new cluster policy applied.
Cluster 1
9.1
Unavailable
Unavailable
Cluster 2
10.4
Unavailable
Unavailable
Cluster 3
11.3
Unavailable
Cluster 4
11.3
Cluster 5
11.3
Cluster 1 | 9.1 | Unavailable | Unavailable |
Cluster 2 | 10.4 | Unavailable | Unavailable |
Cluster 3 | 11.3 | Unavailable |
Cluster 4 | 11.3 |
Cluster 5 | 11.3 |
Databricks metastore magic allows you to migrate your data from the Databricks legacy Hive metastore to the Unity Catalog metastore while protecting data and maintaining your current processes in a single Immuta instance.
Databricks metastore magic is for customers who intend to use either
the Databricks Spark with Unity Catalog support integration or
the Databricks Unity Catalog integration, but they would like to protect tables in the Hive metastore.
Unity Catalog support is enabled in Immuta.
Databricks has two built-in metastores that contain metadata about your tables, views, and storage credentials:
Legacy Hive metastore: Created at the workspace level. This metastore contains metadata of the configured tables in that workspace available to query.
Unity Catalog metastore: Created at the account level and is attached to one or more Databricks workspaces. This metastore contains metadata of the configured tables available to query. All clusters on that workspace use the configured metastore and all workspaces that are configured to use a single metastore share those tables.
Databricks allows you to use the legacy Hive metastore and the Unity Catalog metastore simultaneously. However, Unity Catalog does not support controls on the Hive metastore, so you must attach a Unity Catalog metastore to your workspace and move existing databases and tables to the attached Unity Catalog metastore to use the governance capabilities of Unity Catalog.
Immuta's Databricks Spark integration and Unity Catalog integration enforce access controls on the Hive and Unity Catalog metastores, respectively. However, because these metastores have two distinct security models, users were discouraged from using both in a single Immuta instance before metastore magic; the Databricks Spark integration and Unity Catalog integration were unaware of each other, so using both concurrently caused undefined behavior.
Metastore magic reconciles the distinct security models of the legacy Hive metastore and the Unity Catalog metastore, allowing you to use multiple metastores (specifically, the Hive metastore or AWS Glue Data Catalog alongside Unity Catalog metastores) within a Databricks workspace and single Immuta instance and keep policies enforced on all your tables as you migrate them. The diagram below shows Immuta enforcing policies on registered tables across workspaces.
In clusters A and D, Immuta enforces policies on data sources in each workspace's Hive metastore and in the Unity Catalog metastore shared by those workspaces. In clusters B, C, and E (which don't have Unity Catalog enabled in Databricks), Immuta enforces policies on data sources in the Hive metastores for each workspace.
With metastore magic, the Databricks Spark integration enforces policies only on data in the Hive metastore, while the Databricks Spark integration with Unity Catalog support or the Unity Catalog integration enforces policies on tables in the Unity Catalog metastore. The table below illustrates this policy enforcement.
Essentially, you have two options to enforce policies on all your tables as you migrate after you have enabled Unity Catalog in Immuta:
Enforce plugin-based policies on all tables: Enable the Databricks Spark integration with Unity Catalog support. For details about plugin-based policies, see this overview guide.
Enforce plugin-based policies on Hive metastore tables and Unity Catalog native controls on Unity Catalog metastore tables: Enable the Databricks Spark integration and the Databricks Unity Catalog integration. Some Immuta policies are not supported in the Databricks Unity Catalog integration. Reach out to your Immuta representative for documentation of these limitations.
Databricks Spark integration with Unity Catalog support and Databricks Unity Catalog integration
Enabling the Databricks Spark integration with Unity Catalog support and the Databricks Unity Catalog integration is not supported. Do not use both integrations to enforce policies on your table.
Databricks SQL cannot run the Databricks Spark plugin to protect tables, so Hive metastore data sources will not be policy enforced in Databricks SQL.
To enforce policies on data sources in Databricks SQL, use Hive metastore table access controls to manually lock down Hive metastore data sources and the Databricks Unity Catalog integration to protect tables in the Unity Catalog metastore. Table access control is enabled by default on SQL warehouses, and any Databricks cluster without the Immuta plugin must have table access control enabled.
The table below outlines the integrations supported for various Databricks cluster configurations. For example, the only integration available to enforce policies on a cluster configured to run on Databricks Runtime 9.1 is the Databricks Spark integration.
Legend:
Deprecation notice
This integration has been deprecated and replaced by the Databricks Unity Catalog integration.
This page provides an overview of the Databricks SQL integration in Immuta. For a tutorial detailing how to enable this integration, see the installation guide. Databricks SQL is currently in Public Preview. Please provide feedback on any issues you encounter, as well as insight regarding how you would like this feature to evolve in the future.
Immuta’s Databricks SQL integration provides users direct access to views in a protected database Immuta creates inside Databricks SQL when the integration is configured. This protected database includes
several tables and views Immuta creates to enable policy enforcement (storage of user entitlements, UDFs, etc.).
views that contain policy logic corresponding to the target data source exposed in Immuta by a Data Owner. This view is exposed to all users in Databricks SQL.
When an administrator configures the Databricks SQL integration with Immuta, Immuta creates an immuta
database and Databricks SQL creates a default
database in the SQL Endpoint. Data sources registered in Immuta are added as tables to the default database, and a view is created in the immuta
database for each of these tables.
The credentials provided to set up the integration must have the ability to
create an integration database
configure procedures and functions
maintain state between Databricks and Immuta
Databricks SQL has a two-level structure with databases and tables. To de-conflict these table names when Immuta creates views in the Immuta-protected database, Immuta prepends each table name with its parent database in Databricks SQL (which is configured in the Immuta UI). The following example illustrates a scenario where multiple Databricks SQL databases are configured in Immuta (whose protected database is named immuta_databricks_sql
in the SQL Endpoint):
Datasource A:
parent Databricks SQL database: public
table name: HR_data
Datasource B:
parent Databricks SQL database: default
table name: HR_data
Resulting Immuta views created:
Data Source A: immuta_databricks_sql.public_HR_data
Data Source B: immuta_databricks_sql.default_HR_data
Immuta uses dynamic views to enforce row- and column-level security in Databricks SQL. These dynamic views allow Immuta to manage which users have access to a view’s rows, columns, or specific records by filtering or masking their values.
When a Data Owner exposes a Databricks SQL table as a data source in Immuta and applies a policy to it, Immuta updates the policy definition in the protected immuta
database in Databricks SQL. Then, Immuta creates a dynamic view based on the table in the default
database, the querying users' entitlements, and policies that apply to that table. Finally, Databricks SQL users query the view through the protected immuta
database.
A Databricks SQL Administrator creates a Databricks SQL endpoint.
Databricks creates a default
database. Note: Immuta doesn’t lock down access to the default database; an administrator must do that within Databricks SQL itself.
The Databricks Admin creates a table of 10 million people and queries the table.
An Immuta Application Admin configures the Databricks SQL integration
Immuta creates a protected database inside the Databricks SQL endpoint.
A Data Owner creates data sources in Immuta from the default
Databricks database.
A user adds or edits a policy, or adds a user to a group that changes a policy on a data source.
Immuta updates the policy or user profile information in Databricks.
Immuta creates dynamic views based on tables in the default
database, users, groups, attributes, and policies.
Users query views in the protected database created by Immuta.
You can use a library (like Boto 3 in Python) to access standard Amazon S3 and point it at Immuta to access your data. The integration with Databricks uses a file system (is3a
) that retrieves your API key and communicates with Immuta as if it were talking directly to S3, allowing users to access S3 and Azure Blob data sources through Immuta's s3p
endpoint.
This mechanism would never go to S3 directly. To access S3 directly, you will need to expose an S3-backed table or view in the Databricks Metastore as a source or use native workspaces/scratch paths.
To use the is3a
filesystem, add the following snippet to your cluster configuration:
This configuration is needed to allow any access to is3a
on Databricks 7+.
In Databricks or Spark, write queries that access this data by referencing the S3 path (shown in the Basic Information section of the Upload Files modal above), but using the URL scheme is3a
:
This integration is only available for object-backed data sources. Consequently, all the standard limitations that apply to object-backed data sources in Immuta apply here.
Additional configuration is necessary to allow is3a
paths to function as scratch paths. Contact your Immuta support professional for guidance.
Databricks Runtime 11.3.
Unity Catalog enabled on your Databricks cluster.
Unity Catalog metastore created and attached to a Databricks workspace.
The metastore owner you are using to manage permissions has been granted access to all catalogs, schemas, and tables that will be protected by Immuta. Data protected by Immuta should only be granted to privileged users in Unity Catalog so that the only view of that data is through an Immuta-enabled cluster.
You have generated a personal access token for the metastore owner that Immuta can use to read data in Unity Catalog.
You do not plan to use non-Unity Catalog enabled clusters with Immuta data sources. Once enabled, all access to data source tables must be on Databricks clusters with Unity Catalog enabled on runtime 11.3.
Project Workspaces | Databricks Tag Ingestion | User Impersonation | Native Query Audit | Multiple Integrations |
---|---|---|---|---|
For details about the supported features listed in the table above, see the pre-configuration details page for Databricks.
The table below outlines the integrations supported for various Databricks cluster configurations. For example, the only integration available to enforce policies on a cluster configured to run on Databricks Runtime 9.1 is the Databricks Spark integration.
Example cluster | Databricks Runtime | Unity Catalog in Databricks | Databricks Spark integration | Databricks Spark with Unity Catalog support | Databricks Unity Catalog integration |
---|---|---|---|---|---|
Legend:
Databricks metastore magic allows you to migrate your data from the Databricks legacy Hive metastore to the Unity Catalog metastore while protecting data and maintaining your current processes in a single Immuta instance.
No configuration is necessary to enable this feature. For more details, see the Databricks metastore magic overview.
Native workspaces are not supported. Creating a native workspace on a Unity Catalog enabled host is undefined behavior and may cause data loss or crashes.
Tables must be GRANTed access to the Databricks metastore owner token configured for the integration. For the table to be accessible to the user, the full chain of catalog, schema, and table must all have the appropriate grants to this administrator user to allow them to SELECT from the table.
Direct file access to Immuta data sources is not supported.
Limited Enforcement (called available until protected by policy on the App Settings page), which makes Immuta clusters available to all Immuta users until protected by a policy, is not supported. You must set IMMUTA_SPARK_DATABRICKS_ALLOW_NON_IMMUTA_READS
and IMMUTA_SPARK_DATABRICKS_ALLOW_NON_IMMUTA_WRITES
to false
in your cluster policies manually or by selecting Protected until made available by policy in the Databricks integration section of the App Settings page.
R notebooks may have path-related errors accessing tables.
Databricks on Azure will return errors when creating a database in a scratch location when Unity Catalog is enabled.
Databricks accounts deployed on Google Cloud Platform are not supported.
Configure Databricks Spark integration with Unity Catalog support.
Deprecation notice
This integration has been deprecated and replaced by the Databricks Unity Catalog integration.
This page describes the Databricks SQL integration, configuration options, and features. For a tutorial to enable this integration, see the installation guide. Databricks SQL is currently in Public Preview. Please provide feedback on any issues you encounter, as well as insight regarding how you would like this feature to evolve in the future.
Before an administrator configures the Databricks SQL integration within Immuta, a Databricks SQL administrator must set up a Databricks SQL environment. For guidance in setting up and using a Databricks SQL environment, see the Get started with Databricks SQL guide in the Databricks documentation.
The Databricks SQL administrator must generate a Databricks personal access token (generated by a Databricks SQL administrator), which will be used to configure Databricks SQL with Immuta. This token allows users to authenticate to the Databricks REST API and Immuta to connect to SQL endpoints and create the Immuta database inside Databricks SQL. Databricks will only display this personal access token once, so be sure to copy and save it.
Note: If a Databricks SQL administrator does not generate the token, it will not carry appropriate privileges to allow Immuta to create this database and an error will be displayed in the Immuta UI.
The Databricks SQL integration supports the following authentication method to install the integration and create data sources:
Privileged User Token: Users can authenticate with a Databricks SQL personal access token. Note: The access token should not have an expiration date. If it has an expiration date set, the token will need to be updated periodically when the current one expires.
The Immuta Databricks SQL integration cannot ingest tags from Databricks SQL, but you can connect any of these supported external catalogs to work with your integration.
Users can configure multiple integrations of Databricks SQL with a single Immuta instance.
Starting a SQL Analytics endpoint in Databricks SQL can take several minutes to complete. This startup time is inherent in the Databricks SQL product. As a result, for the Databricks SQL and Immuta Native SQL integration to function properly (i.e., for schema changes to be automatically detected, and for other basic functionality), you should ensure Auto Stop is set to OFF for your SQL Analytics endpoint in Databricks SQL Analytics. Please note that this has cost implications for your Databricks usage.
Currently, Databricks SQL does not have support for UDFs. Due to this limitation, Immuta is unable to support format preserving encryption, reversible masking, randomized response, or regex policies.
In some situations where subscription policies are being updated frequently, a bottleneck can occur with respect to showing and hiding view metadata. This will not affect typical use cases.
This page describes the design, policy enforcement, and data flow of the Starburst (Trino) integration v2.0.
After reading this page, see the for information about features and requirements before you .
The Starburst (Trino) integration v2.0 allows you to access policy-enforced data directly in your Starburst catalogs without rewriting queries or changing workflows. Instead of generating policy-enforced views and adding them to an Immuta catalog that users have to query (like in the ), Immuta policies are translated into Starburst (Trino) rules and permissions and applied directly to tables within users’ existing catalogs.
Once an Immuta Application Admin configures the Starburst (Trino) integration v2.0, the ImmutaSystemAccessControl plugin is installed on the . This plugin provides policy decisions to the Trino Execution Engine whenever an Immuta user queries a Starburst (Trino) table registered in Immuta. Then, the Trino Execution Engine applies policies to the backing catalogs and retrieves the data with appropriate policy enforcement.
By default, this integration is designed to be minimally invasive: if a catalog is not registered as an Immuta data source, users will still have access to it in Starburst. However, this limited enforcement can be changed in the provided by Immuta. Additionally, you can continue to use Trino's file-based access control provider or on catalogs that are not protected or controlled by Immuta.
When a user queries a table in Starburst, the Trino Execution Engine reaches out to the Immuta plugin to determine what the user is allowed to see:
masking policies: For each column, Starburst (Trino) requests a view expression from the Immuta plugin. If there is a masking policy on the column, the Immuta plugin returns the corresponding view expression for that column. Otherwise, nothing is returned.
row-level policies: For each table, Starburst (Trino) requests the rows a user can see in a table from Immuta. If there is a WHERE clause policy on the data source, Immuta returns the corresponding view expression as a WHERE clause. Otherwise, nothing is returned.
The Immuta plugin then requests policy information about the tables being queried from the Immuta Web Service and sends this information to the Trino Execution Engine. Finally, the Trino Execution Engine constructs the SQL statement, executes it on the backing tables to apply the policies, and returns the response to the user.
Users cannot bypass Immuta controls
Users cannot bypass Immuta controls by changing roles in their system access control provider.
Multiple system access control providers can be configured in the Starburst (Trino) integration v2.0. This approach allows Immuta to work with existing Starburst (Trino) installations that already have an access control provider configured.
Immuta does not manage all permissions in Starburst (Trino) and will default to allowing access to anything Immuta does not manage so that the Starburst (Trino) integration v2.0 complements existing controls. For example, if the Starburst (Trino) integration v2.0 is configured to allow users write access to tables that are not protected by Immuta, you can still lock down write access for specific non-Immuta tables using an additional access control provider.
If you have multiple access control providers configured, those providers interact in the following ways:
For a user to have access to a resource (catalog, schema, or a table), that user must have access in all of the configured access control providers.
In catalog, schema, or table filtering (such as show catalogs
, show schemas
, or show tables
), the user will see the intersection of all access control providers. For example, if a Starburst (Trino) environment includes the catalogs public
, demo
, and restricted
and one provider restricts a user from accessing the restricted
catalog and another provider restricts the user from accessing the demo
catalog, running show catalogs
will only return the public
catalog for that user.
Only one column masking policy can be applied per column across all system access control providers. If two or more access control providers return a mask for a column, Starburst (Trino) will throw an error at query time.
For row filtering policies, the expression for each system access control provider is applied one after the other.
Starburst (Trino) query passthrough is available in most connectors using the query
table function or raw_query
in the Elasticsearch connector. Consequently, Immuta blocks functions named raw_query
or query
, as those table functions would completely bypass Immuta’s access controls.
For example, without blocking those functions, this query would access the public.customer
table directly:
select * from table(postgres.system.query(query => 'select * from public.customer limit 10'));
An Immuta Application Administrator configures the Starburst (Trino) integration, adding the ImmutaSystemAccessControl plugin on their Starburst (Trino) node.
Data source metadata, tags, user metadata, and policy definitions are stored in Immuta's Metadata Database.
The Trino Execution Engine calls various methods on the interface to ask the ImmutaSystemAccessControl plugin where the policies should be applied. The masking and row-level security methods apply the actual policy expressions.
The Immuta System Access Control plugin calls the Immuta Web Service to retrieve policy information for that data source for the querying user, using the querying user's project, purpose, and entitlements.
The Immuta System Access Control plugin provides the SQL view expression (for masked columns) or WHERE clause SQL view expression (for row filtering) to the Trino Execution Engine.
The Trino Execution Engine constructs and executes the SQL statement on the backing catalogs and retrieves the data with appropriate policy enforcement.
User sees policy-enforced data.
Deprecation notice
Support for this integration has been deprecated. Use the instead.
This page details how to configure the integration.
The plugin comes pre-installed with Starburst Enterprise, so this page provides separate sets of guidelines for configuration:
: These instructions are specific to Starburst Enterprise clusters.
: These instructions are specific to open-source Trino clusters.
Installation Method
This installation method is only available to users on Starburst Enterprise. If you are using any other form of Trino, see the .
The must be uploaded on the .
Click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click Add Native Integration and select Trino from the dropdown menu.
Click Save.
If you are using OAuth or asynchronous authentication to create Starburst (Trino) data sources, configure the globalAdminUsername
property in the advanced configuration section of the Immuta app settings page.
Click the App Settings page icon.
Click Advanced Settings and scroll to Advanced Configuration.
Paste the following YAML configuration snippet in the text box, replacing the email address below with your admin username:
Create a configuration file immuta.properties
with the following contents in the etc/catalog
folder:
Create an etc/event-listener.properties
file in the same etc/catalog
folder.
Copy the Event Listener Configuration items from the App Settings page and paste it in the event-listener.properties
file.
Best Practice: Give Users read-only
Access to Immuta Catalog
Give users read-only
access to the Immuta catalog. This will prevent users from describing the views, which in turn prevents them from seeing secrets involved in some masking policies.
Click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click Add Native Integration and select Trino from the dropdown menu.
Click Save.
The catalog configuration displayed in this section will need to be written out on all nodes (/etc/trino/config/catalog/immuta.properties).
If you are using OAuth or asynchronous authentication to create Starburst (Trino) data sources, configure the globalAdminUsername
property in the advanced configuration section of the Immuta app settings page.
Click the App Settings page icon.
Click Advanced Settings and scroll to Advanced Configuration.
Paste the following YAML configuration snippet in the text box, replacing the email address below with your admin username:
Best Practice: Immuta Archives Access Required
Enable Immuta on your cluster. Select the tab below that corresponds to your installation method for instructions:
Docker installations
Extract the archive to a local directory and mount the local directory to /usr/lib/trino/plugin/immuta
in the Docker container.
Install the plugin on all nodes within your cluster.
Standalone installations
Extract the archive to the plugin/immuta
directory in the Trino installation directory.
Install the plugin on all nodes within your cluster.
Best Practice: Trino Database Structure
The top level is set based on the name of the catalog properties files in the /etc/trino/catalog
directory. Use the name immuta.properties
for this file, which will result in a Trino catalog named “immuta.”
To configure the Immuta connector, mount the Immuta connector as the Immuta catalog: Create an immuta.properties
file with the following contents, replacing the connection properties with your Trino Cluster Configuration displayed on the App Settings page:
TLS Certificate Generation
If you provided your own TLS certificates during Immuta installation, you must ensure that the hostname in your certificate matches the hostname specified in the Starburst (Trino) configuration.
If you did not provide your own TLS certificates, Immuta generated these certificates for you during installation. See notes about your specific deployment method below for details.
If the hostnames in your certificate don't match the hostname specified in your Starburst (Trino) integration, you can set immuta.disable-hostname-verification
to true
to get the integration working in the interim.
You can include any of these parameters in your immuta.properties
file to customize your integration.
immuta.ca-data
The base64-encoded CA certificate to use when making calls to the Immuta Web Service.
immuta.ca-file
: The path to a CA file to use when making calls to the Immuta Web Service.
immuta.cache.audit.seconds
: The amount of time in seconds audit-related query metadata should be cached in the Immuta Metadata Database. If you customize this value, it should be set to a value longer than the longest running query you plan to execute against the Immuta catalog (The default is 24 hours.).
immuta.cache.datasources.seconds
: The amount of time in seconds a user's available data sources will be cached. Changing this will impact how quickly available data sources will show up when updating projects or subscriptions.
immuta.cache.views.seconds
: The amount of time in seconds that a user's view of a data source will be cached. Changing this will impact how quickly policy changes are reflected for users actively querying.
immuta.disable-hostname-verification
: Disable hostname verification when connecting to the Immuta Web Service.
Copy the Event Listener Configuration items from the App Settings page and paste it in the event-listener.properties
file.
Best Practice: Give Users read-only
Access to Immuta Catalog
Give users read-only
access to the Immuta catalog. This will prevent users from describing the views, which in turn prevents them from seeing secrets involved in some masking policies.
Private preview
Write policies are only available to select accounts. Contact your Immuta representative to enable this feature.
Starburst (Trino) version 438 or newer
Starburst (Trino) integration v2.0
Write policies for Starburst (Trino) enabled. Contact your Immuta representative to get this feature enabled on your account.
In its default setting, the Starburst (Trino) integration's write access value controls the authorization of SQL operations that perform data modification (such as INSERT
, UPDATE
, DELETE
, MERGE
, and TRUNCATE
). However, administrators can allow table modification operations (such as ALTER
and DROP
tables) to be authorized as write operations. Two locations allow administrators to specify how are applied to data in Starburst (Trino). Select one or both of the options below to customize these settings. If the access-control.properties
file is used, it may override the policies configured in the Immuta web service.
: Configure write policies in the Immuta web service to allow all Starburst (Trino) clusters targeting that Immuta tenant to receive the same write policy configuration for data sources. This configuration will only affect tables or views registered as Immuta data sources.
: Configure write policies using the access-control.properties
file in or to broadly customize access for Immuta users on a specific cluster. This configuration file takes precedence over write policies passed from the Immuta web service. Use this option if all Immuta users should have the same level of access to tables regardless of the write policy setting in the Immuta web service.
Contact your Immuta representative to configure read and write access in the Immuta web service if all Starburst (Trino) data source operations should be affected identically across Starburst (Trino) clusters connected to your Immuta tenant. A configuration example is provided below.
The following example maps WRITE
to READ
, WRITE
and OWN
permissions and READ
to just READ
. Both READ
and WRITE
permissions should always include READ
:
Configure the integration to allow read and write policies to apply to any data source (registered or unregistered in Immuta) on a Starburst cluster.
Create the Immuta access control configuration file in the Starburst configuration directory (/etc/starburst/immuta-access-control.properties
for Docker installations or <starburst_install_directory>/etc/immuta-access-control.properties
for standalone installations).
Modify one or both properties below to customize the behavior of read or write access policies for all users:
immuta.allowed.immuta.datasource.operations
: This property governs objects (catalogs, schemas, tables, etc.) that are registered as data sources in Immuta. For these permissions to apply, the user must be subscribed to the data source in Immuta and not be an administrator (who gets all permissions).
READ
: Grants SELECT
on tables or views; grants SHOW
on tables, views, or columns
WRITE
: Grants INSERT
, UPDATE
, DELETE
, MERGE
, or TRUNCATE
on tables; grants REFRESH
on materialized views.
OWN
: Grants ALTER
and DROP
on tables; grants SET
on comments and properties
immuta.allowed.non.immuta.datasource.operations
: This property governs objects (catalogs, schemas, tables, etc.) that are not registered as data sources in Immuta. Use all or a combination of the following access values:
READ
: Grants SELECT
on tables or views; grants SHOW
on tables, views, or columns
WRITE
: Grants INSERT
, UPDATE
, DELETE
, MERGE
, or TRUNCATE
on tables; grants REFRESH
on materialized views.
OWN
: Grants ALTER
and DROP
on tables; grants SET
on comments and properties
CREATE
: Grants CREATE
on catalogs, schema, tables, and views. This is the only property that can allow CREATE
permissions, since CREATE
is enforced on new objects that do not exist in Starburst or Immuta yet (such as a new table being created with CREATE TABLE
).
For example, the following configuration allows READ
, WRITE
, and OWN
operations to be authorized on data sources registered in Immuta and all operations are permitted on data that is not registered in Immuta:
Enable the Immuta access control plugin in the Starburst cluster's configuration file (/etc/starburst/config.properties
for Docker installations or <starburst_install_directory>/etc/config.properties
for standalone installations). For example,
Create the Immuta access control configuration file in the Trino configuration directory (/etc/trino/config.properties
for Docker installations or <trino_install_directory>/etc/config.properties
for standalone installations).
Modify one or both properties below to customize the behavior of read or write access policies for all users:
immuta.allowed.immuta.datasource.operations
: This property governs objects (catalogs, schemas, tables, etc.) that are registered as data sources in Immuta. For these permissions to apply, the user must be subscribed to the data source in Immuta and not be an administrator (who gets all permissions).
READ
: Grants SELECT
on tables or views; grants SHOW
on tables, views, or columns
WRITE
: Grants INSERT
, UPDATE
, DELETE
, MERGE
, or TRUNCATE
on tables; grants REFRESH
on materialized views.
OWN
: Grants ALTER
and DROP
on tables; grants SET
on comments and properties
immuta.allowed.non.immuta.datasource.operations
: This property governs objects (catalogs, schemas, tables, etc.) that are not registered as data sources in Immuta. Use all or a combination of the following access values:
READ
: Grants SELECT
on tables or views; grants SHOW
on tables, views, or columns
WRITE
: Grants INSERT
, UPDATE
, DELETE
, MERGE
, or TRUNCATE
on tables; grants REFRESH
on materialized views.
OWN
: Grants ALTER
and DROP
on tables; grants SET
on comments and properties
CREATE
: Grants CREATE
on catalogs, schema, tables, and views. This is the only property that can allow CREATE
permissions, since CREATE
is enforced on new objects that do not exist in Starburst or Immuta yet (such as a new table being created with CREATE TABLE
).
For example, the following configuration allows READ
, WRITE
, and OWN
operations to be authorized on data sources registered in Immuta and all operations are permitted on data that is not registered in Immuta:
Enable the Immuta access control plugin in Trino's configuration file (/etc/trino/config.properties
for Docker installations or <trino_install_directory>/etc/config.properties
for standalone installations). For example,
Deprecation notice
Support for this integration has been deprecated. Use the instead.
See the .
Click a link below to navigate to a tutorial for your Starburst (Trino) integration.
See the .
Click a link below to navigate to a tutorial for your Starburst (Trino) integration.
Deprecation notice
Support for this integration has been deprecated. Use the instead.
Project Workspaces | Tag Ingestion | User Impersonation | Native Query Audit | Multiple Integrations |
---|
Starburst: A valid
The Starburst (Trino) integration supports the following authentication methods to create data sources in Immuta:
Username and password: You can authenticate with your Starburst (Trino) username and password.
OAuth 2.0: You can authenticate with OAuth 2.0. Immuta's OAuth authentication method uses the ; when you register a data source, Immuta reaches out to your OAuth server to generate a JSON web token (JWT) and then passes that token to the Starburst (Trino) cluster.
Configure JWT authentication method in Starburst (Trino)
When using OAuth authentication to create data sources in Immuta, configure your Starburst (Trino) cluster to use JWT authentication, not OpenID Connect or OAuth.
When users query a Starburst (Trino) data source, Immuta sends a username with the view SQL so that policies apply in the right context. Since OAuth authentication does not require a username to be associated with a data source upon data source creation, Immuta does not send a username and Starburst (Trino) queries fail. To avoid this error, you must configure a global admin username.
You can configure multiple Starburst (Trino) integrations v2.0 with a single Immuta tenant and use them dynamically. Configure the integration once in Immuta to use it in multiple Starburst or Trino clusters. However, consider the following limitations:
Names of catalogs cannot overlap because Immuta cannot distinguish among them.
Only one cluster type is supported: You can connect either Starburst or Trino clusters. These cluster types are not supported together in a single Immuta tenant.
Certain interpolation functions can block the creation of a native view, specifically @interpolatedComparison()
and @iam
.
Trino supports an optional anonymous (no authentication) access, which is not supported through Immuta because Immuta ties the Trino user account to the Immuta user account to correctly apply policies. If your organization allows anonymous access, you will not be able to use this integration.
Limit your masked joins to columns with matching column types. Starburst truncates the result of the masking expression to conform to the native column type when performing the join, so joining two masked columns with different data types produces invalid results when one of the columns' lengths is less than the length of the masked value.
For example, if the value of a hashed column is 64 characters, joining a hashed varchar(50) and a hashed varchar(255) column will not be joined correctly, since the varchar(50) value is truncated and doesn’t match the varchar(255) value.
This page details how to install the integration v2.0.
The plugin comes pre-installed with Starburst Enterprise, so this page provides separate sets of guidelines for configuration:
: These instructions are specific to Starburst Enterprise clusters.
: These instructions are specific to open-source Trino clusters.
A valid .
Starburst does not support using Starburst built-in access control (BIAC) concurrently with any other access control providers such as Immuta. If Starburst BIAC is in use, it must be disabled to allow Immuta to enforce policies on cluster.
Click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click Add Native Integration and select Trino from the dropdown menu.
Click Save.
If you are using OAuth or asynchronous authentication to create Starburst (Trino) data sources, configure the globalAdminUsername
property in the advanced configuration section of the Immuta app settings page.
Click the App Settings page icon.
Click Advanced Settings and scroll to Advanced Configuration.
Paste the following YAML configuration snippet in the text box, replacing the email address below with your admin username:
Default Configuration Property Values
If you use the default property values in the configuration file described in this section,
you will give users read and write access to tables that are not registered in Immuta and
results for SHOW
queries will not be filtered on table metadata.
These default settings help ensure that a new Starburst integration installation is minimally disruptive for existing Starburst deployments, allowing you to then add Immuta data sources and update configuration to enforce more controls as you see fit.
However, the access-control.config-files
property can be configured to allow Immuta to work with existing Starburst installations that have already configured an access control provider. For example, if the Starburst integration v2.0 is configured to allow users write access to tables that are not protected by Immuta, you can still lock down write access for specific non-Immuta tables using an additional access control provider.
TLS Certificate Generation
If you provided your own TLS certificates during Immuta installation, you must ensure that the hostname in your certificate matches the hostname specified in the Starburst (Trino) configuration.
If you did not provide your own TLS certificates, Immuta generated these certificates for you during installation. See notes about your specific deployment method below for details.
If the hostnames in your certificate don't match the hostname specified in your Starburst (Trino) integration, you can set immuta.disable-hostname-verification
to true
in the Immuta access control config file to get the integration working in the interim.
The Starburst (Trino) integration uses the immuta.ca-file
property to communicate with Immuta. When configuring the plugin in Starburst (outlined below), specify a path to your CA file using the immuta.ca-file
property in the Immuta access control configuration file.
Create the Immuta access control configuration file in the Starburst configuration directory (/etc/starburst/immuta-access-control.properties
for Docker installations or <starburst_install_directory>/etc/immuta-access-control.properties
for standalone installations).
The table below describes the properties that can be set during configuration.
Enable the Immuta access control plugin in Starburst's configuration file (/etc/starburst/config.properties
for Docker installations or <starburst_install_directory>/etc/config.properties
for standalone installations). For example,
All Starburst users must map to Immuta users or match the immuta.user.admin
regex configured on the cluster, and their Starburst username must be mapped to Immuta so they can query policy-enforced data.
A user impersonating a different user in Starburst requires the IMPERSONATE_USER permission in Immuta. Both users must be mapped to an Immuta user, or the querying user must match the configured immuta.user.admin
regex.
Click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click Add Native Integration and select Trino from the dropdown menu.
Click Save.
If you are using OAuth or asynchronous authentication to create Starburst (Trino) data sources, configure the globalAdminUsername
property in the advanced configuration section of the Immuta app settings page.
Click the App Settings page icon.
Click Advanced Settings and scroll to Advanced Configuration.
Paste the following YAML configuration snippet in the text box, replacing the email address below with your admin username:
Default Configuration Property Values
If you use the default property values in the configuration file described in this section,
you will give users read and write access to tables that are not registered in Immuta and
results for SHOW
queries will not be filtered on table metadata.
These default settings help ensure that a new Starburst integration installation is minimally disruptive for existing Trino deployments, allowing you to then add Immuta data sources and update configuration to enforce more controls as you see fit.
However, the access-control.config-files
property can be configured to allow Immuta to work with existing Trino installations that have already configured an access control provider. For example, if the Starburst (Trino) integration v2.0 is configured to allow users write access to tables that are not protected by Immuta, you can still lock down write access for specific non-Immuta tables using an additional access control provider.
TLS Certificate Generation
If you provided your own TLS certificates during Immuta installation, you must ensure that the hostname in your certificate matches the hostname specified in the Starburst (Trino) configuration.
If you did not provide your own TLS certificates, Immuta generated these certificates for you during installation. See notes about your specific deployment method below for details.
If the hostnames in your certificate don't match the hostname specified in your Starburst (Trino) integration, you can set immuta.disable-hostname-verification
to true
in the Immuta access control config file to get the integration working in the interim.
The Starburst (Trino) integration uses the immuta.ca-file
property to communicate with Immuta. When configuring the plugin in Starburst (outlined below), specify a path to your CA file using the immuta.ca-file
property in the Immuta access control configuration file.
Enable Immuta on your cluster. Select the tab below that corresponds to your installation method for instructions:
Docker installations
Create the Immuta access control configuration file in the Trino configuration directory: /etc/trino/immuta-access-control.properties
.
Standalone installations
Create the Immuta access control configuration file in the Trino configuration directory: <trino_install_directory>/etc/immuta-access-control.properties
.
Configure the properties described in the table below.
Enable the Immuta access control plugin in Trino's configuration file (/etc/trino/config.properties
for Docker installations or <trino_install_directory>/etc/config.properties
for standalone installations). For example,
All Trino users must map to Immuta users or match the immuta.user.admin
regex configured on the cluster, and their Trino username must be mapped to Immuta so they can query policy-enforced data.
A user impersonating a different user in Trino requires the IMPERSONATE_USER permission in Immuta. Both users must be mapped to an Immuta user, or the querying user must match the configured immuta.user.admin
regex.
Audience: System Administrators, Data Governors, and Data Owners
Content Summary: This page provides an overview of the Redshift integration in Immuta.
For a tutorial detailing how to enable this integration, see the .
Redshift is a policy push integration that allows Immuta to apply policies directly in Redshift. This allows data analysts to query Redshift views directly instead of going through a proxy and have per-user policies dynamically applied at query time.
The Redshift integration will create views from the tables within the database specified when configured. Then, the user can choose the name for the schema where all the Immuta generated views will reside. Immuta will also create the schemas immuta_system
, immuta_functions
, and immuta_procedures
to contain the tables, views, UDFs, and stored procedures that support the integration. Immuta then creates a system role and gives that system account the following privileges:
ALL PRIVILEGES ON DATABASE IMMUTA_DB
ALL PRIVILEGES ON ALL SCHEMAS IN DATABASE IMMUTA_DB
USAGE ON FUTURE PROCEDURES IN SCHEMA IMMUTA_DB.IMMUTA_PROCEDURES
USAGE ON LANGUAGE PLPYTHONU
Additionally the PUBLIC
role will be granted the following privileges:
USAGE ON DATABASE IMMUTA_DB
TEMP ON DATABASE IMMUTA_DB
USAGE ON SCHEMA IMMUTA_DB.IMMUTA_PROCEDURES
USAGE ON SCHEMA IMMUTA_DB.IMMUTA_FUNCTIONS
USAGE ON FUTURE FUNCTIONS IN SCHEMA IMMUTA_DB.IMMUTA_FUNCTIONS
USAGE ON SCHEMA IMMUTA_DB.IMMUTA_SYSTEM
SELECT ON TABLES TO public
Immuta supports the Redshift integration as both multi-database and single-database integrations.
If using a multi-database integration, you must use a Redshift cluster with an RA3 node because Immuta requires cross-database views.
If using a single-database integration, all Redshift cluster types are supported. However, because cross-database queries are not supported in any types other than RA3, Immuta's views must exist in the same database as the raw tables. Consequently, the steps for configuring the integration for Redshift clusters with external tables differ slightly from those that don't have external tables. Allow Immuta to create secure views of your external tables through one of these methods:
SQL statements are used to create all views, including a join to the secure view: immuta_system.user_profile
. This secure view is a select from the immuta_system.profile
table (which contains all Immuta users and their current groups, attributes, projects, and a list of valid tables they have access to) with a constraint immuta__userid = current_user()
to ensure it only contains the profile row for the current user. The immuta_system.user_profile
view is readable by all users, but will only display the data that corresponds to the user executing the query.
The Redshift integration uses webhooks to keep views up-to-date with Immuta data sources. When a data source or policy is created, updated, or disabled, a webhook will be called that will create, modify, or delete the dynamic view. The immuta_system.profile
table is updated through webhooks when a user's groups or attributes change, they switch projects, they acknowledge a purpose, or when their data source access is approved or revoked. The profile table can only be read and updated by the Immuta system account.
Immuta creates a database inside the configured Redshift ecosystem that contains Immuta policy definitions and user entitlements.
Data source metadata, tags, user metadata, and policy definitions are stored in Immuta's Metadata Database.
The Immuta Web Service calls a stored procedure that modifies the user entitlements or policies.
Audience: System Administrators
Content Summary: This page documents an example of a Starburst (Trino) Catalog policy, which can be used to protect sensitive data in your Starburst (Trino) cluster before Immuta is installed.
Starburst (Trino) Catalog Policy
The configuration of Starburst (Trino) catalog policies described below does not pertain to Immuta configuration or Immuta policies; this configuration manages access to sensitive data before Immuta is installed. Once Immuta is installed, Immuta's Subscription policies dynamically enforce access restrictions within the immuta
catalog, so if you opt to use the configuration below, it should be removed after Immuta is installed.
All data sources created in Immuta will exist in the immuta
catalog created by the System Administrator who configures the Starburst (Trino) integration. However, if organizations add sensitive data to Starburst (Trino) and need to restrict access to catalogs before Immuta is installed, they can do so by using the , which controls access using catalog, schema, and table rules:
The catalog rules are course grained rules used to restrict all access or write access to catalogs. They do not explicitly grant any specific schema or table permissions. The table and schema rules are used to specify who can create, drop, alter, select, insert, delete, etc. for schemas and tables.
Follow the steps below to create a catalog policy to restrict access to your Starburst (Trino) data before Immuta is installed.
Follow to install the plugin, which allows you to specify authorization rules in a JSON file.
Create a catalog policy to manage access to the catalogs in Starburst (Trino) by following to the JSON file.
The following catalog policy gives every user access to immuta
and only super_admin_user
can access catalogs besides immuta
.
Audience: System Administrators
Content Summary: This page describes the Redshift integration, configuration options, and features.
For a tutorial to enable this integration, see the .
For automated installations, the credentials provided must be a Superuser or have the ability to create databases and users and modify grants.
Redshift Serverless.
. For configuration and data source registration instructions, see the .
The Redshift integration supports the following authentication methods to install the integration and create data sources:
Username and Password: Users can authenticate with their Redshift username and password.
AWS Access Key: Users can authenticate with an .
Okta: Users can authenticate with their Okta credentials when installing the integration with the manual configuration.
Required Redshift Privileges
Setup User:
OWNERSHIP ON GROUP IMMUTA_IMPERSONATOR_ROLE
CREATE GROUP
Immuta System Account:
GRANT EXECUTE ON PROCEDURE grant_impersonation
GRANT EXECUTE ON PROCEDURE revoke_impersonation
The host of the data source must match the host of the native connection for the native view to be created.
When using multiple Redshift integrations, a user has to have the same user account across all hosts.
Registering Redshift datashares as Immuta data sources is unsupported.
For most policy types in Redshift, Immuta uses SQL clauses to implement enforcement logic; however Immuta uses Python UDFs in the Redshift integration to implement the following masking policies:
Masking using a regular expression
Reversible masking
Format-preserving masking
Randomized response
The number of Python UDFs that can run concurrently per Redshift cluster is limited to one-fourth of the total concurrency level for the cluster. For example, if the Redshift cluster is configured with a concurrency of 15, a maximum of three Python UDFs can run concurrently. After the limit is reached, Python UDFs are queued for execution within workload management queues.
The SVL_QUERY_QUEUE_INFO
view in Redshift, which is visible to a Redshift superuser, summarizes details for queries that spent time in a workload management (WLM) query queue. Queries must be completed in order to appear as results in the SVL_QUERY_QUEUE_INFO
view.
This page describes the Starburst (Trino) integration v2.0 configuration options and features.
See the to enable the integration.
Project Workspaces | Tag Ingestion | User Impersonation | Native Query Audit | Multiple Integrations |
---|
A valid
The Starburst (Trino) integration v2.0 supports the following authentication methods to create data sources in Immuta:
Username and password: You can authenticate with your Starburst (Trino) username and password.
OAuth 2.0: You can authenticate with OAuth 2.0. Immuta's OAuth authentication method uses the ; when you register a data source, Immuta reaches out to your OAuth server to generate a JSON web token (JWT) and then passes that token to the Starburst (Trino) cluster.
Configure JWT authentication method in Starburst (Trino)
When using OAuth authentication to create data sources in Immuta, configure your Starburst (Trino) cluster to use JWT authentication, not OpenID Connect or OAuth.
When users query a Starburst (Trino) data source, Immuta sends a username with the view SQL so that policies apply in the right context. Since OAuth authentication does not require a username to be associated with a data source upon data source creation, Immuta does not send a username and Starburst (Trino) queries fail. To avoid this error, you must configure a global admin username.
In addition to the information included on the Starburst (Trino) Audit Logs page, the audit logs payload in the Starburst (Trino) integration v2.0 includes immutaPlanningDuration
, which represents the planning overhead in Immuta.
You can configure multiple Starburst (Trino) integrations v2.0 with a single Immuta tenant and use them dynamically. Configure the integration once in Immuta to use it in multiple Starburst or Trino clusters. However, consider the following limitations:
Names of catalogs cannot overlap because Immuta cannot distinguish among them.
Only one cluster type is supported: You can connect either Starburst or Trino clusters. These cluster types are not supported together in a single Immuta tenant.
The descriptions below provide guidance for applying policies to Starburst (Trino)-created logical views in the
However, there are other approaches you can use to apply policies to Starburst (Trino)-created logical views. The examples below are the simplest approaches.
DEFINER
Security ModeFor views created using the DEFINER
security mode,
ensure the user who created the view is configured as an admin user in the Immuta plugin so that policies are never applied to the underlying tables.
create Immuta data sources and apply policies to logical views exposing those tables.
lock down access to the underlying tables in Starburst (Trino) so that all end user access is provided through the views.
INVOKER
Security ModeApplying Policies to Views or Tables
Avoid creating data policies for both a logical view and its underlying tables. Instead, apply policies to the logical view or the underlying tables.
For views created using the INVOKER
security mode, the querying user needs access to the logical view and underlying tables.
If non-Immuta table reads are disabled, provide access to the views and tables through Immuta. To do so, create Immuta data sources for the view and underlying tables, and grant access to the querying user in Immuta. If creating data policies, apply the policies to either the view or underlying tables, not both.
If non-Immuta table reads are enabled, the user already has access to the table and view. Create Immuta data sources and apply policies to the underlying table; this approach will enforce access controls for both the table and view in Starburst (Trino).
Limit your masked joins to columns with matching column types. Starburst truncates the result of the masking expression to conform to the native column type when performing the join, so joining two masked columns with different data types produces invalid results when one of the columns' lengths is less than the length of the masked value.
For example, if the value of a hashed column is 64 characters, joining a hashed varchar(50) and a hashed varchar(255) column will not be joined correctly, since the varchar(50) value is truncated and doesn’t match the varchar(255) value.
This page illustrates how to configure the Redshift integration in Immuta. For an overview of the integration, see the documentation.
For instructions on configuring Redshift Spectrum, see the guide.
A Redshift cluster with an RA3 node is required for the multi-database integration. You must use a Redshift RA3 instance type because Immuta requires cross-database views, which are only supported in Redshift RA3 instance types. For other instance types, you may configure a single-database integration using one of the .
For automated installations, the credentials provided must be a Superuser or have the ability to create databases and users and modify grants.
The must be set to false
(default setting) for your Redshift cluster.
Click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click the +Add Native Integration button and select Redshift from the dropdown menu.
Complete the Host and Port fields.
Enter an Immuta Database. This is a new database where all secure schemas and Immuta created views will be stored.
Opt to check the Enable Impersonation box and customize the Impersonation Role name as needed. This will allow users to natively impersonate another user.
You have two options for configuring your Redshift environment:
Immuta requires temporary, one-time use of credentials with specific privileges.
When performing an automated installation, Immuta requires temporary, one-time use of credentials with the following privileges:
CREATE DATABASE
CREATE USER
REVOKE ALL PRIVILEGES ON DATABASE
GRANT TEMP ON DATABASE
MANAGE GRANTS ON ACCOUNT
These privileges will be used to create and configure a new IMMUTA database within the specified Redshift instance. The credentials are not stored or saved by Immuta, and Immuta doesn’t retain access to them after initial setup is complete.
You can create a new account for Immuta to use that has these privileges, or you can grant temporary use of a pre-existing account. By default, the pre-existing account with appropriate privileges is a Superuser. If you create a new account, it can be deleted after initial setup is complete.
Alternatively, you can create the IMMUTA database within the specified Redshift instance without giving Immuta user credentials for a Superuser using the manual setup option.
Select Automatic.
Enter an Initial Database from your Redshift integration for Immuta to use to connect.
Use the dropdown menu to select your Authentication Method.
Username and Password: Enter the Username and Password of the privileged user.
AWS Access Key: Enter the Database User, Access Key ID, and Secret Key. Opt to enter in the Session Token.
Required privileges
The specified role used to run the bootstrap needs to have the following privileges:
CREATE DATABASE
CREATE USER
REVOKE ALL PRIVILEGES ON DATABASE
GRANT TEMP ON DATABASE
MANAGE GRANTS ON ACCOUNT
Select Manual and download both of the bootstrap scripts.
Run the bootstrap script (initial database) in the Redshift initial database.
Run the bootstrap script (Immuta database) in the new Immuta Database in Redshift.
Choose your authentication method, and enter the information of the newly created account.
Click Test Redshift Connection.
Once the credentials are successfully tested, click Save.
Click Confirm.
Click the App Settings icon in the left sidebar.
Navigate to the Integration Settings section and click the down arrow next to the Redshift Integration.
Edit the field you want to change. Note any field shadowed is not editable, and the integration must be disabled and re-installed to change it.
Enter Username and Password.
Immuta requires temporary, one-time use of credentials with specific permissions.
When performing edits to an integration, Immuta requires temporary, one-time use of credentials of a Superuser or a user with the following permissions:
Create Databases
Create users
Modify grants
Alternatively, you can download the Edit Script and run it in Redshift.
Click Validate Credentials.
Click Save.
Click Confirm.
Redshift Spectrum
Click the App Settings icon in the left sidebar.
Navigate to the Integration Settings section and click the down arrow next to the Redshift Integration.
Click the checkbox to disable the integration.
Enter the username and password that were used to initially configure the integration and click Validate Credentials.
Click Save.
Click Confirm.
/
/
/
/
Table location | Databricks Spark integration | Databricks Spark integration with Unity Catalog support | Databricks Unity Catalog integration |
---|---|---|---|
Example cluster | Databricks Runtime | Unity Catalog in Databricks | Databricks Spark integration | Databricks Spark with Unity Catalog support | Databricks Unity Catalog integration |
---|---|---|---|---|---|
The feature or integration is enabled.
The feature or integration is disabled.
The feature or integration is enabled.
The feature or integration is disabled.
See the for instructions on configuring multiple access control providers.
You can add or remove functions that are blocked by Immuta in the Starburst (Trino) integration v2.0 configuration file. See the for instructions.
A data owner . A data owner, data governor, or administrator or user in Immuta.
A Starburst (Trino) user who is subscribed to the data source in Immuta directly in their Starburst catalog.
For more details, see .
For more details, see .
Follow to configure Starburst to block access to any catalog that is not Immuta so that all user access has policies enacted on it.
.
A user with access to Immuta's Archives site is required to conduct the download in this step at . If you are prompted to log in and need basic authentication credentials, contact your Immuta support professional.
The Immuta Trino plugin version is updated alongside Trino so that a matching version of the plugin is published for corresponding Trino releases. For example, the Immuta plugin version supporting Trino version 403 is simply version 403
. Download the plugin from version from site that corresponds with the Trino version you use.
Follow to install the plugin archive on all nodes in your cluster.
Follow to install the plugin archive on all nodes in your cluster.
Follow to create this catalog directory: /etc/trino/config/catalog
.
: Immuta generates a local certificate authority (CA) that signs certificates for each service by default. Ensure that the externalHostname
you specified in the Immuta Helm Chart matches the Immuta hostname name specified in the Starburst (Trino) configuration.
The Starburst (Trino) integration uses the to communicate with Immuta. Specify a path to your CA file using the immuta.ca-file
property.
immuta.error-on-audit-failure
: When set to true
, error out when an Immuta audit record can not be created. Only used when the .
Create an event-listener.properties
file in this directory: /etc/trino/
. For more details, see .
Follow to configure Trino to block access to any catalog that is not Immuta so that all user access has policies enacted on it.
.
Given the above configuration, when a user gets write access to a Starburst (Trino) data source, they will have both data and table modification permissions on that data source. See the for details about these operations.
If you are using OAuth or asynchronous authentication to create Starburst (Trino) data sources, see the to set the globalAdminUsername
property in the advanced configuration section of the Immuta app settings page.
The Starburst (Trino) integration cannot ingest tags from Trino or Starburst, but you can connect any of these to work with your integration.
Native impersonation allows users to natively query data as another Immuta user. To enable native user impersonation, see the page.
When the is enabled during the installation, Immuta can translate those events into comprehensive audit logs for users with the Immuta AUDIT
permission to view. For more information about what is included in those audit logs, see the page.
: Immuta generates a local certificate authority (CA) that signs certificates for each service by default. Ensure that the externalHostname
you specified in the Immuta Helm Chart matches the Immuta hostname name specified in the Starburst (Trino) configuration.
Property | Starburst version | Required or optional | Description |
---|
The example configuration snippet below uses the default configuration settings for immuta.allowed.immuta.datasource.operations
and immuta.allowed.non.immuta.datasource.operations
, which allow read access for data registered as Immuta data sources and read and write access on data that is not registered in Immuta. See the for details about customizing and enforcing read and write access controls in Starburst.
to add users to Immuta.
when configuring your IAM (or map usernames manually) to Immuta.
.
A user with access to Immuta's Archives site is required to conduct the download in this step at . If you are prompted to log in and need basic authentication credentials, contact your Immuta support professional.
: Immuta generates a local certificate authority (CA) that signs certificates for each service by default. Ensure that the externalHostname
you specified in the Immuta Helm Chart matches the Immuta hostname name specified in the Starburst (Trino) configuration.
The Immuta Trino plugin version is updated alongside Trino so that a matching version of the plugin is published for corresponding Trino releases. For example, the Immuta plugin version supporting Trino version 403 is simply version 403
. Download the plugin from version from site that corresponds with the Trino version you use.
Follow to install the plugin archive on all nodes in your cluster.
Follow to install the plugin archive on all nodes in your cluster.
Property | Trino version | Required or optional | Description |
---|
The example configuration snippet below uses the default configuration settings for immuta.allowed.immuta.datasource.operations
and immuta.allowed.non.immuta.datasource.operations
, which allow read access for data registered as Immuta data sources and read and write access on data that is not registered in Immuta. See the for details about customizing and enforcing read and write access controls in Starburst.
to add users to Immuta.
when configuring your IAM (or map usernames manually) to Immuta.
.
: Instead of creating an immuta
database that manages all schemas and views created when Redshift data is registered in Immuta, the integration adds the Immuta-managed schemas and views to an existing database in Redshift.
and re-create all of your external tables in that database.
An Immuta Application Administrator and registers Redshift warehouse and databases with Immuta.
A Data Owner registers Redshift tables in Immuta as .
A Data Owner, Data Governor, or Administrator or user in Immuta.
A Redshift user who is subscribed to the data source in Immuta directly in Redshift through the immuta database and sees policy-enforced data.
Redshift Spectrum () allows Redshift users to query external data directly from files on Amazon S3. Because cross-database queries are not supported in Redshift Spectrum, Immuta's views must exist in the same database as the raw tables. Consequently, the steps for configuring the integration for Redshift clusters with external tables differ slightly from those that don't have external tables. Allow Immuta to create secure views of your external tables through one of these methods:
: Instead of creating an immuta
database that manages all schemas and views created when Redshift data is registered in Immuta, the integration adds the Immuta-managed schemas and views to an existing database in Redshift
and re-create all of your external tables in that database.
Once the integration is configured, Data Owners must .
Immuta cannot ingest tags from Redshift, but you can connect any of these to work with your integration.
Impersonation allows users to query data as another Immuta user in Redshift. To enable user impersonation, see the page.
Users can enable multiple with a single Immuta instance.
Case sensitivity of database, table, and column identifiers is not supported. The must be set to false
(default setting) for your Redshift cluster to configure the integration and register data sources.
If you find that queries on Immuta-built views are spending time in the workload management (WLM) query queue, you should either edit your Redshift cluster configuration to increase concurrency, or use fewer of the masking policies which leverage Python UDFs. For more information on increasing concurrency, see the Redshift docs on implementing .
If you are using OAuth or asynchronous authentication to create Starburst (Trino) data sources, see the to set the globalAdminUsername
property in the advanced configuration section of the Immuta app settings page.
The Starburst (Trino) integration cannot ingest tags from Starburst (Trino), but you can connect any of these to work with your integration.
Impersonation allows users to query data as another Immuta user. To enable user impersonation, see the page.
The Immuta Trino Event Listener allows Immuta to translate events into comprehensive audit logs for users with the Immuta AUDIT
permission to view. For more information about what is included in those audit logs, see the page.
Immuta policies can be applied to .
and
: Grant Immuta one-time use of credentials to automatically configure your Redshift environment and the integration.
: Run the Immuta script in your Redshift environment yourself to configure your environment and the integration.
.
Disabling the Redshift integration is not supported when you set the fields nativeWorkspaceName
, nativeViewName
, and nativeSchemaName
to . Disabling the integration when these fields are used in metadata ingestion causes undefined behavior.
Allow Immuta to create secure views of your external tables through one of these methods:
Configure the integration with an existing database that contains the external tables: Instead of creating an immuta
database that manages all schemas and views created when Redshift data is registered in Immuta, the integration adds the Immuta-managed schemas and views to an existing database in Redshift
Configure the integration by creating a new immuta
database and re-create all of your external tables in that database.
For an overview of the integration, see the Redshift overview documentation.
A Redshift cluster with an AWS row-level security patch applied. Contact Immuta for guidance.
The enable_case_sensitive_identifier
parameter must be set to false
(default setting) for your Redshift cluster.
The Redshift role used to run the Immuta bootstrap script must have the following privileges when configuring the integration to
Use an existing database:
ALL PRIVILEGES ON DATABASE
for the database you configure the integration with, as you must manage grants on that database.
CREATE USER
GRANT TEMP ON DATABASE
Create a new database:
CREATE DATABASE
CREATE USER
GRANT TEMP ON DATABASE
REVOKE ALL PRIVILEGES ON DATABASE
Click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click the +Add Native Integration button and select Redshift from the dropdown menu.
Complete the Host and Port fields.
Enter the name of the database you created the external schema in as the Immuta Database. This database will store all secure schemas and Immuta-created views.
Opt to check the Enable Impersonation box and customize the Impersonation Role name as needed. This will allow users to natively impersonate another user.
Select Manual and download both of the bootstrap scripts. The specified role used to run the bootstrap needs to have the following privileges:
ALL PRIVILEGES ON DATABASE
for the database you configure the integration with, as you must manage grants on that database.
CREATE USER
GRANT TEMP ON DATABASE
Run the bootstrap script (Immuta database) in the Redshift database that contains the external schema.
Choose your authentication method, and enter the credentials from the bootstrap script for the Immuta_System_Account
.
Click Test Redshift Connection.
Once the credentials are successfully tested, click Save and Confirm.
Register Redshift data in Immuta.
Click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click the +Add Native Integration button and select Redshift from the dropdown menu.
Complete the Host and Port fields.
Enter an Immuta Database. This is a new database where all secure schemas and Immuta created views will be stored.
Opt to check the Enable Impersonation box and customize the Impersonation Role name as needed. This will allow users to natively impersonate another user.
Select Manual and download both of the bootstrap scripts. The specified role used to run the bootstrap needs to have the following privileges:
ALL PRIVILEGES ON DATABASE
for the database you configure the integration with, as you must manage grants on that database.
CREATE DATABASE
CREATE USER
GRANT TEMP ON DATABASE
Run the bootstrap script (initial database) in the Redshift initial database.
Run the bootstrap script (Immuta database) in the new Immuta Database in Redshift.
Choose your authentication method, and enter the credentials from the bootstrap script for the Immuta_System_Account
.
Click Test Redshift Connection.
Once the credentials are successfully tested, click Save and Confirm.
Then, add your external tables to the Immuta database.
The following options are available when setting up an identity provider that uses the SAML 2.0 protocol.
Allow identity provider initiated single sign on: When enabled, users authenticate once in their identity provider and can log in to Immuta.
Allow identity provider initiated single logout: When enabled, users can log out of Immuta or their identity provider and simultaneously log out of other applications. Additional configuration settings will appear when this checkbox is selected:
Logout URL: The URL of your single sign on application that will be redirected to after you log out of Immuta, as some identity providers differentiate between the logout and authorization URLs.
SLO binding URL: The URL Immuta displays that you can add to your identity provider to specify where to send requests or responses to Immuta's SLO requests.
Encryption private key: An optional private key to encrypt requests.
Decryption private key: The private key for decrypting attribute assertions from the identity provider.
Display name: The internal ID of the identity manager in Immuta. This setting cannot be changed once the configuration is saved.
Entry point: The URL of your single sign on application that the Immuta login page will redirect to.
External groups and attributes endpoint: A REST endpoint that Immuta will use to retrieve a user's groups and attributes.
Issuer: The URL of the identity provider that issues assertions for authentication.
Migrate users: Migrate users from a previously configured identity provider to the current identity provider.
SCIM support: When enabled, your identity provider automatically creates new users in Immuta and updates existing user accounts, whether or not users log in to Immuta. When you click this checkbox, Immuta generates a SCIM API key.
Signing certificate: Your identity provider's public signing certificate.
Sync attributes from SAML to Immuta: Allows attributes added in your identity provider to be synced with Immuta.
Attribute delimiter: The character used to split values in a string of attributes. After enabling sync attributes, providing delimiters for attributes is required.
Attribute prefix: The prefix used for attribute keys.
Sync groups from SAML to Immuta: Allows groups added in your identity provider to be synced with Immuta.
Group attribute: The attribute that contains the user's group. Enable sync groups from SAML to Immuta to make this option available.
User ID attribute: The attribute that contains the user's username.
Cluster 1
9.1
Unavailable
Unavailable
Cluster 2
10.4
Unavailable
Unavailable
Cluster 3
11.3
Unavailable
Cluster 4
11.3
Cluster 5
11.3
Hive metastore
Unity Catalog metastore
Cluster 1
9.1
Unavailable
Unavailable
Cluster 2
10.4
Unavailable
Unavailable
Cluster 3
11.3
Unavailable
Cluster 4
11.3
Cluster 5
11.3
Project Workspaces
User Impersonation
Native Query Audit
| 392 and newer | Required |
| 392 and newer | Optional |
| 413 and newer | Optional |
| 392 and newer | Optional |
| 392 and newer | Required | This should be set to the Immuta API key displayed when enabling the integration on the app settings page. |
| 392 and newer | Optional | This property allows you to specify a path to your CA file. |
| 392 and newer | Optional | Amount of time in seconds for which a user's specific representation of an Immuta data source will be cached for. Changing this will impact how quickly policy changes are reflected for users actively querying Starburst. By default, cache expires after 30 seconds. |
| 392 and newer | Optional | Amount of time in seconds for which a user's available Immuta data sources will be cached for. Changing this will impact how quickly data sources will be available due to changing projects or subscriptions. By default, cache expires after 30 seconds. |
| 392 and newer | Required | The protocol and fully qualified domain name (FQDN) for the Immuta instance used by Starburst (for example, |
| 392 and newer | Optional | When set to false, Immuta won't filter unallowed table metadata, which helps ensure Immuta remains noninvasive and performant. If this property is set to true, running |
| 420 and newer | Required if | This property identifies the Starburst group that is the Immuta administrator. The users in this group will not have Immuta policies applied to them. Therefore, data sources should be created by users in this group so that they have access to everything. This property can be used in conjunction with the |
| 392 and newer | Required if | This property identifies the Starburst user who is an Immuta administrator (for example, |
| 392 and newer | Required | This property enables the integration. |
| 392 and newer | Optional | Trino allows you to enable multiple system access control providers at the same time. To do so, add providers to this property as comma-separated values. This approach allows Immuta to work with existing Trino installations that have already configured an access control provider. Immuta does not manage all permissions in Trino and will default to allowing access to anything Immuta does not manage so that the Starburst (Trino) integration complements existing controls. For example, if the Starburst (Trino) integration is configured to allow users write access to tables that are not protected by Immuta, you can still lock down write access for specific non-Immuta tables using an additional access control provider. |
| 413 and newer | Optional |
| 392 and newer | Optional |
| 392 and newer | Required | This should be set to the Immuta API key displayed when enabling the integration on the app settings page. |
| 392 and newer | Optional | This property allows you to specify a path to your CA file. |
| 392 and newer | Optional | Amount of time in seconds for which a user's specific representation of an Immuta data source will be cached for. Changing this will impact how quickly policy changes are reflected for users actively querying Trino. By default, cache expires after 30 seconds. |
| 392 and newer | Optional | Amount of time in seconds for which a user's available Immuta data sources will be cached for. Changing this will impact how quickly data sources will be available due to changing projects or subscriptions. By default, cache expires after 30 seconds. |
| 392 and newer | Required | The protocol and fully qualified domain name (FQDN) for the Immuta instance used by Trino (for example, |
| 392 and newer | Optional | When set to false, Immuta won't filter unallowed table metadata, which helps ensure Immuta remains noninvasive and performant. If this property is set to true, running |
| 420 and newer | Required if | This property identifies the Trino group that is the Immuta administrator. The users in this group will not have Immuta policies applied to them. Therefore, data sources should be created by users in this group so that they have access to everything. This property can be used in conjunction with the |
| 392 and newer | Required if | This property identifies the Trino user who is an Immuta administrator (for example, |
Project Workspaces | Query Audit |
Audience: Data Governors, Data Owners, and System Administrators
Content Summary: This page describes the Azure Synapse Analytics integration, through which Immuta applies policies directly in Azure Synapse Analytics.
For a tutorial on configuring Azure Synapse Analytics see the Azure Synapse Integration page.
The Azure Synapse Analytics is a policy push integration that allows Immuta to apply policies directly in Azure Synapse Analytics Dedicated SQL pools without the need for users to go through a proxy. Instead, users can work within their existing Synapse Studio and have per-user policies dynamically applied at query time.
This integration works on a per-Dedicated-SQL-pool basis: all of Immuta's policy definitions and user entitlements data need to be in the same pool as the target data sources because Dedicated SQL pools do not support cross-database joins. Immuta creates schemas inside the configured Dedicated SQL pool that contain policy-enforced views that users query.
When the integration is configured, the Application Admin specifies the
Immuta Database: This is the pre-existing database Immuta uses. Immuta will create views from the tables contained in this database, and all schemas and views created by Immuta will exist in this database, such as the schemas immuta_system
, immuta_functions
, and the immuta_procedures
that contain the tables, views, UDFs, and stored procedures that support the integration.
Immuta Schema: The schema that Immuta manages. All views generated by Immuta for tables registered as data sources will be created in this schema.
User Profile Delimiters: Since Azure Synapse Analytics dedicated SQL pools do not support array or hash objects, certain user access information is stored as delimited strings; the Application Admin can modify those delimiters to ensure they do not conflict with possible characters in strings.
For a tutorial on configuring the integration see the Azure Synapse Integration page.
Synapse data sources are represented as views and are under one schema instead of a database, so their view names are a combination of their schema and table name, separated by an underscore.
For example, with a configuration that uses IMMUTA
as the schema in the database dedicated_pool
, the view name for the data source dedicated_pool.tpc.case
would be dedicated_pool.IMMUTA.tpc_case
.
You can see the view information on the data source overview page under Connection Information.
This integration uses webhooks to keep views up-to-date with the corresponding Immuta data sources. When a data source or policy is created, updated, or disabled, a webhook is called that creates, modifies, or deletes the dynamic view in the Immuta schema. Note that only standard views are available because Azure Synapse Analytics Dedicated SQL pools do not support secure views.
An Immuta Application Administrator configures the Synapse integration, registering their initial Synapse Dedicated SQL pool with Immuta.
Immuta creates Immuta schemas inside the configured Synapse Dedicated SQL pool.
A Data Owner registers Synapse tables in Immuta as data sources. A Data Owner, Data Governor, or Administrator creates or changes a policy or user in Immuta.
Data source metadata, tags, user metadata, and policy definitions are stored in Immuta's Metadata Database.
The Immuta Web Service calls a stored procedure that modifies the user entitlements or policies and updates data source view definitions as necessary.
A Synapse user who is subscribed to the data source in Immuta queries the corresponding data source view in Synapse and sees policy-enforced data.
Private preview
This integration is available to select accounts. Reach out to your Immuta representative for details.
The Google BigQuery integration allows users to query policy protected data directly in BigQuery as secure views within an Immuta-created dataset. Immuta controls who can see what within the views, allowing data governors to create complex ABAC policies and data users to query the right data within the BigQuery console.
Google BigQuery is configured through the Immuta console and a script provided by Immuta. While you can complete some steps within the BigQuery console, it is easiest to install using gcloud and the Immuta script.
Once Google BigQuery has been configured, BigQuery admins can start creating subscription and data policies to meet compliance requirements and users can start querying policy protected data directly in BigQuery.
Create a global subscription or supported data policy.
Revoke user access to the original datasets and grant users access to the Immuta created datasets in BigQuery.
Users query data from the Immuta created datasets directly in BigQuery.
What permissions will Immuta have in my BigQuery environment?
You can find a list of the permissions the custom Immuta role has here.
What integration features will Immuta support for BigQuery?
For private preview, Immuta supports a basic version of the BigQuery integration where Immuta can enforce specific policies on data in a single BigQuery project. At this time, workspaces, tag ingestion, user impersonation, native query audit, and multiple integrations are not supported.
In this policy push integration, Immuta creates views that contain all policy logic. Each view has a 1-to-1 relationship with the original table. Access controls are applied in the view, allowing customers to leverage Immuta’s powerful set of attribute-based policies and query data directly in BigQuery.
BigQuery is organized by projects (which can be thought of as databases), datasets (which can be compared to schemas), tables, and views. When you enable the integration, an Immuta dataset is created in BigQuery that contains the Immuta-required user entitlements information. These objects within the Immuta dataset are intended to only be used and altered by the Immuta application.
After data sources are registered, Immuta uses the custom user and role, created before the integration is enabled, to push the Immuta data sources as views into a mirrored dataset of the original table. Immuta manages grants on the created view to ensure only users subscribed to the Immuta data source will see the data.
The Immuta integration uses a mirrored dataset approach. That is, if the source dataset is named mydataset
, Immuta will create a dataset named mydataset_secure
, assuming that _secure
is the specified Immuta dataset suffix. This mirrored dataset is an authorized dataset, allowing it to access the data of the original dataset. It will contain the Immuta-managed views, which have identical names to the original tables they’re based on.
Following the principle of least privilege, Immuta does not have permission to manage Google Cloud Platform users, specifically in granting or denying access to a project and its datasets. This means that data governors should limit user access to original datasets to ensure data users are accessing the data through the Immuta created views and not the backing tables. The only users who need to have access to the backing tables are the credentials used to register the tables in Immuta.
Additionally, a data governor must grant users access to the mirrored datasets that Immuta will create and populate with views. Immuta and BigQuery’s best practice recommendation is to grant access via groups in Google Cloud Platform. Because users still must be registered in Immuta and subscribed to an Immuta data source to be able to query Immuta views, all Immuta users can be granted access to the mirrored datasets that Immuta creates.
This integration can only be enabled through a manual bootstrap using the Immuta API.
This integration can only be enabled to work in a single region.
This integration supports the following policy types:
Column masking
Mask using hashing (SHA256())
Mask by making NULL
Mask using constant
Mask using a regular expression
Mask by date rounding
Mask by numeric rounding
Mask using custom functions
Row-level masking
Row visibility based on user attributes and/or object attributes
Only show rows that fall within a given time window
Minimize rows
Filter rows using custom WHERE clause
Always hide rows
See the resources below to start implementing and using the BigQuery integration:
Building global subscription and data policies to govern data
Creating projects to collaborate
Follow this guide to connect your Google BigQuery data warehouse to Immuta.
Immuta SaaS or Immuta v2023.1 or newer with Google BigQuery integration (PrPr) enabled.
Google BigQuery ODBC driver uploaded on the Immuta app settings page.
Immuta role with SYSTEM_ADMIN permissions and an API key.
The Google BigQuery integration requires you to create a Google Cloud service account and role that will be used by Immuta to
create a Google BigQuery dataset that will be used to store a table of user entitlements, UDFs for policy enforcement, etc.
manage the table of user entitlements via updates when entitlements change in Immuta.
create datasets and secure views with access control policies enforced, which mirror tables inside of datasets you ingest as Immuta data sources.
You have two options to create the required Google Cloud service account and role:
The bootstrap.sh
script is a shell script provided by Immuta that creates prerequisite Google Cloud IAM objects for the integration to connect. When you run this script from your command line, it will create the following items, scoped at the :
A new Google Cloud IAM role
A new Google Cloud service account, which will be granted the newly-created role
A JSON keyfile for the newly-created service account
You will need to use the objects created in these steps to enable the Google BigQuery integration.
Google Cloud IAM roles required to run the script
To execute bootstrap.sh
from your command line, you must be authenticated to the gcloud CLI utility as a user with all of the following roles:
roles/iam.roleAdmin
roles/iam.serviceAccountAdmin
roles/serviceusage.serviceUsageAdmin
Having these three roles is the least-privilege set of Google Cloud IAM roles required to successfully run the bootstrap.sh
script from your command line. However, having either of the following Google Cloud IAM roles will also allow you to run the script successfully:
roles/editor
roles/owner
Install gcloud.
Set the account property in the core section for Google Cloud CLI to the account gcloud should use for authentication. (You can run gcloud auth list to see your currently available accounts):
In Immuta, navigate to the App Settings page and click the Integrations tab.
Click Add Native Integration and select Google BigQuery from the dropdown menu.
Click Select Authentication Method and select Key File.
Click Download Script(s).
Before you run the script, update your permissions to execute it:
Run the script, where
PROJECT_ID is the Google Cloud Platform project to operate on.
ROLE_ID is the name of the custom role to create.
NAME will create a service account with the provided name.
OUTPUT_FILE is the path where the resulting private key should be written. File system write permission will be checked on the specified path prior to the key creation.
undelete-role (optional) will undelete the custom role from the project. Roles that have been deleted for a long time can't be undeleted. This option can fail for the following reasons:
The role specified does not exist.
The active user does not have permission to access the given role.
enable-api (optional) provided you’ve been granted access to enable the Google BigQuery API, will enable the service.
Alternatively, you may use the Google Cloud Console to create the prerequisite role, service account, and private key file for the integration to connect to Google BigQuery.
Create a custom role using the console with the following privileges:
bigquery.datasets.create
bigquery.datasets.delete
bigquery.datasets.get
bigquery.datasets.update
bigquery.jobs.create
bigquery.jobs.get
bigquery.jobs.list
bigquery.jobs.listAll
bigquery.routines.create
bigquery.routines.delete
bigquery.routines.get
bigquery.routines.list
bigquery.routines.update
bigquery.tables.create
bigquery.tables.delete
bigquery.tables.export
bigquery.tables.get
bigquery.tables.getData
bigquery.tables.list
bigquery.tables.setCategory
bigquery.tables.update
bigquery.tables.updateData
bigquery.tables.updateTag
Create a service account and grant it the custom role you created in step 1.
Once the Google Cloud IAM custom role and service account are created, you can enable the Google BigQuery integration. This section illustrates how to enable the integration on the Immuta app settings page. To configure this integration via the Immuta API, see the Configure a Google BigQuery integration API guide.
In Immuta, navigate to the App Settings page and click the Integrations tab.
Click Add Native Integration and select Google BigQuery from the dropdown menu.
Click Select Authentication Method and select Key File.
Upload your GCP Service Account Key File. This is the private key file generated in create a Google Cloud service account and role for Immuta to use to connect to Google BigQuery. Uploading this file will auto-populate the following fields:
Project Id: The Google Cloud Platform project to operate on, where your Google BigQuery data warehouse is located. A new dataset will be provisioned in this Google BigQuery project to store the integration configuration.
Service Account: The service account you created in create a Google Cloud service account and role for Immuta to use to connect to Google BigQuery.
Complete the following fields:
Immuta Dataset: The name of the Google BigQuery dataset to provision inside of the project. Important: if you are using multiple environments in the same Google BigQuery project, this dataset to provision must be unique across environments.
Immuta Role: The custom role you created in create a Google Cloud service account and role for Immuta to use to connect to Google BigQuery.
Dataset Suffix: The suffix that will be postfixed to the name of each dataset created to store secure views, one per dataset that you ingest a table for as a data source in Immuta. Important: if you are using multiple environments in the same Google BigQuery project, this suffix must be unique across environments.
GCP Location: The dataset’s location. After a dataset is created, the location can't be changed. Note that
If you choose EU for the dataset location, your Core BigQuery Customer Data resides in the EU.
The region set for the GCP location must match the region of your datasets. Set GCP location to a general region (for example, US
) to include child regions.
Click Test Google BigQuery Integration.
Click Save and confirm your configuration changes.
You can disable the Google BigQuery integration automatically or manually.
Click the App Settings icon, and then click the Integrations tab.
Select the Google BigQuery integration you would like to disable, and select the Disable Integration checkbox.
Click Save.
The privileges required to run the cleanup script are the same as the Google Cloud IAM roles required to run the bootstrap.sh
script.
Click the App Settings icon, and then click the Integrations tab.
Select the Google BigQuery integration you would like to disable, and click Download Scripts.
Click Save. Wait until Immuta has finished saving your configuration changes before proceeding.
Before you run the script, update your permissions to execute it:
Run the cleanup script.
Build global subscription policies and data policies
Create projects to securely collaborate on analytical workloads
The SAML 2.0 single logout (SAML SLO) protocol allows identity providers to terminate sessions across a user's applications nearly simultaneously with a single logout request.
SAML SLO enabled in Immuta can minimize security risks by terminating abandoned sessions after a timeout event occurs or after a user logs out of their identity provider or another application. Once users are logged out of Immuta, they must re-authenticate to log back in.
Immuta APPLICATION_ADMIN permission
An identity provider that supports the SAML protocol. See this list of supported identity providers and their protocols.
There are two logout processes for SAML SLO:
Application-initiated logout: A user logs out from a service provider.
Identity-provider-initiated logout: A user logs out from their identity provider.
The following objects are referenced in both processes below:
Principal: A user, service, or process that must authenticate with a service before being granted access and privileges.
Service provider (or session participant): The service or application the principal wants to be granted access to (for example, Immuta).
Session authority (or identity management provider): The identity management provider that verifies the principal's identity. See this list of supported identity providers for examples.
Session: The period during which the principal is authenticated with the service provider; a session is started when a user authenticates their identity using a password or another authentication protocol and the service provider has verified that the user is allowed access to their service.
Immuta's SAML SLO support has been tested with the following identity providers:
Key Cloak
Microsoft Entra ID
See your identity provider's documentation to determine whether or not your provider supports SAML SLO. For a list of identity providers and protocols supported by Immuta, see the identity management support matrix.
Immuta cannot ensure that other service providers will log out, as Immuta has no control over those applications.
Private preview
The Amazon S3 integration is available to select accounts. Reach out to your Immuta representative for details.
Immuta's Amazon S3 integration allows users to apply subscription policies to data in S3 to restrict what prefixes, buckets, or objects users can access. To enforce access controls on this data, Immuta creates S3 grants that are administered by S3 Access Grants, an AWS feature that defines access permissions to data in S3.
No location is registered in your S3 Access Grants instance before configuring the integration in Immuta
APPLICATION_ADMIN
Immuta permission to configure the integration
CREATE_S3_DATASOURCE
Immuta permission to register S3 prefixes
The AWS account credentials or optional AWS IAM role you provide Immuta when configuring the integration must
have the permissions to perform the following actions to create locations and issue grants:
accessgrantslocation resource:
s3:CreateAccessGrant
s3:DeleteAccessGrantsLocation
s3:GetAccessGrantsLocation
accessgrantsinstance resource:
s3:CreateAccessGrantsLocation
s3:GetAccessGrantsInstance
s3:GetAccessGrantsInstanceForPrefix
s3:GetAccessGrantsInstanceResourcePolicy
s3:ListAccessGrants
s3:ListAccessGrantsLocations
bucket resource: s3:ListBucket
accessgrant resource:
s3:DeleteAccessGrant
s3:GetAccessGrant
role resource:
iam:GetRole
iam:PassRole
all resources: s3:ListAccessGrantsInstances
Follow AWS documentation to create an Access Grants instance using the S3 console, AWS CLI, AWS SDKs, or the REST API. AWS supports one Access Grants instance per region per AWS account.
Follow the instructions at the top of the "Register a location" page in AWS documentation to create an AWS IAM role and give the S3 Access Grants service principal access to this role in the resource policy file. You will add this role to your integration configuration in Immuta so that Immuta can register this role with your Access Grants location. The AWS documentation linked above gives a complete policy example, but your policy should include the following permissions:
sts:AssumeRole
sts:SetSourceIdentity
sts:SetContext
Follow the instructions at the top of the "Register a location" page in AWS documentation to create an IAM policy with the following permissions, and attach the policy to the IAM role you created to grant the permissions to the role. The AWS documentation linked above gives a complete example, but the policy should at least include the following permissions:
s3:GetObject
s3:GetObjectVersion
s3:GetObjectAcl
s3:GetObjectVersionAcl
s3:ListMultipartUploadParts
s3:PutObject
s3:PutObjectAcl
s3:PutObjectVersionAcl
s3:DeleteObject
s3:DeleteObjectVersion
s3:AbortMultipartUpload
s3:ListBucket
s3:ListAllMyBuckets
iam:passRole
If you use server-side encryption with AWS Key Management Service (AWS KMS) keys to encrypt your data, the following permissions are required for the IAM role in the policy. If you do not use this feature, do not include these permissions in your IAM policy:
kms:Decrypt
kms:GenerateDataKey
Opt to create an AWS IAM role that Immuta can use to create Access Grants locations and issue grants. This role must have the S3 permissions listed in the permissions section.
In Immuta, click App Settings in the navigation menu and click the Integrations tab.
Click + Add Native Integration.
Select Amazon S3 from the dropdown menu and click Continue Configuration.
Complete the connection details fields, where
Friendly Name is a name for the integration that is unique across all Amazon S3 integrations configured in Immuta.
AWS Account ID is the ID of your AWS account.
AWS Region is the AWS region to use.
S3 Access Grants Location IAM Role ARN is the role the S3 Access Grants service assumes to vend credentials to the grantee. When a grantee accesses S3 data, the Access Grants service attaches session policies and assumes this role in order to vend credentials scoped to a prefix or bucket to the grantee. This role needs full access to all paths under the S3 location prefix.
S3 Access Grants S3 Location Scope is the base S3 location that Immuta will use for this connection when registering S3 prefixes. This path must be unique across all S3 integrations configured in Immuta. During data source registration, this prefix is prepended to the data source prefixes to build the final path used to grant or revoke access to that data in S3. For example, a location prefix of s3://research-data
would be prepended to the data source prefix /demographics
to generate a final path of s3://research-data/demographics
.
Select your authentication method:
Automatic: Searches and obtains credentials using the AWS SDK's default credential provider chain. This method requires a configured IAM role for a service account. This option is only supported if you're using a self-managed deployment of Immuta. Work with your Immuta representative to customize your deployment and set up an IAM role for a service account that can give Immuta the credentials to set up the integration.
Access Key: Provide your AWS Access Key ID and AWS Secret Access Key.
Click Verify Credentials.
Click Next to review and confirm your connection information, and then click Complete Setup.
Follow the Create an S3 data source guide to register prefixes in Immuta.
To create an S3 data source using the API, see the Configure an S3 integration and create an S3 data source API guide.
Requirements: USER_ADMIN
Immuta permission and either the GOVERNANCE
or CREATE_S3_DATASOURCE
Immuta permission
Build subscription policies to enforce access controls.
Map AWS IAM principals to each Immuta user to ensure Immuta properly enforces policies:
Click People and select Users in the navigation menu.
Navigate to the user's page and click the more actions icon next to their username.
Select Change S3 User or AWS IAM Role from the dropdown menu.
Enter the AWS IAM User or Role ARN. User and role names are case-sensitive. See the AWS documentation for details.
Click Save.
See the Mapping IAM principals in Immuta section for details about supported principals.
Requirement: User must be subscribed to the data source in Immuta
Request access to Amazon S3 data through S3 Access Grants. If you're accessing S3 data through one of the supported S3 Access Grants integrations (such as Amazon EMR on EC2), that application will make this request on your behalf, so you can skip this step.
Immuta's Amazon S3 integration allows users to apply subscription policies to data in S3 to restrict what prefixes, buckets, or objects users can access. To enforce access controls on this data, Immuta creates S3 grants that are administered by S3 Access Grants, an AWS feature that defines access permissions to data in S3.
With this integration, users can avoid
hand-writing AWS IAM policies
managing AWS IAM role limits
manually tracking what user or role has access to what files in AWS S3 and verifying those are consistent with intent
To enforce controls on S3 data, Immuta interacts with several S3 Access Grants components:
Access Grants instance: An Access Grants instance is a logical container for individual grants that specify who can access what level of data in S3 in your AWS account and region. AWS supports one Access Grants instance per region per AWS account.
Location: A location specifies what data the Access Grants instance can grant access to. For example, registering a location with a scope of s3://
allows Access Grants to manage access to all S3 buckets in that AWS account and region, whereas setting the bucket s3://research-data
as the scope limits Access Grants to managing access to that single bucket for that location. When you configure the S3 integration in Immuta, you specify a location's scope and IAM assumed role, and Immuta registers the location in your Access Grants instance and associates it with the provided IAM role for you. Each S3 integration you configure in Immuta is associated with one location, and Immuta manages all grants in that location. Therefore, grants cannot be manually created by users in an Access Grants instance location that Immuta has registered and manages. During data source registration, this location scope is prepended to the data source prefixes to build the final path used to grant or revoke access to that data in S3. For example, a location scope of s3://research-data
would be prepended to the data source prefix /demographics
to generate a final path of s3://research-data/demographics
.
Individual grants: Individual permission grants in S3 Access Grants specify the identity that can access the data, the access level, and the location of the S3 data. Immuta creates a grant for each user subscribed to a prefix, bucket, or object by interacting with the Access Grants API. Each grant has its own ID and gives the user or role principle access to the data.
IAM assumed role: This is an IAM role you create in S3 that has full access to all prefixes, buckets, and objects in the Access Grants location registered by Immuta. This IAM role is used to vend temporary credentials to users or applications. When a grantee requests temporary credentials, the S3 Access Grants service assumes this role to vend credentials scoped to the prefix, bucket, or object specified in the grant to the grantee. The grantee then uses these credentials to access S3 data. When configuring the integration in Immuta, you specify this role, and then Immuta associates this role with the registered location in the Access Grants instance.
Temporary credentials: These just-in-time access credentials provide access to a prefix, bucket, or object with a permission level of READ or READWRITE in S3. When a user or application requests temporary credentials to access S3 data, the S3 Access Grants instance evaluates the request against the grants Immuta has created for that user. If a matching grant exists, S3 Access Grants assumes the IAM role associated with the location of the matching grant and scopes the permissions of the IAM session to the S3 prefix, bucket, or object specified by the grant and vends these temporary credentials to the requester. These credentials have a default timeout of 1 hour, but this duration can be changed by the requester.
The diagram below illustrates how these S3 Access Grants components interact.
For more details about these Access Grants concepts, see the S3 Access Grants documentation.
After an administrator creates an Access Grants instance and an assumed IAM role in their AWS account, an application administrator configures the Amazon S3 integration in Immuta. During configuration, the administrator provides the following connection information so that Immuta can create and register a location in that Access Grants instance:
AWS account ID and region
ARN for the existing Access Grants instance
ARN for the assumed IAM role
When Immuta registers this location, it associates the assumed IAM role with the location. This allows the IAM role to create temporary credentials with access scoped to a particular S3 prefix, bucket, or object in the location. The IAM role you create for this location must have all the object- and bucket-level permissions listed in the set up S3 Access Grants instance section on all buckets and objects in the location; if it is missing permissions, the IAM role will not be able to grant those missing permissions to users or applications requesting temporary credentials.
In the example below, an application administrator registers the following location prefix and IAM role for their Access Grants instance in AWS account 123456
:
Location path: s3://
. This path allows a single Amazon S3 integration to manage all objects in S3 in that AWS account and region. Data owners can scope down access further when registering specific S3 prefixes and applying policies.
Location IAM role: The arn:aws:iam::123456:role/access-grants-role
IAM role will be used to vend temporary credentials to users and applications.
Immuta registers this location and associated IAM role in the user's Access Grants instance:
After the S3 integration is configured, a data owner can register S3 prefixes and buckets that are in the configured Access Grants location path to enforce access controls on resources. Immuta stores the connection information for the prefix so that the metadata can be used to create and enforce subscription policies on S3 data.
A data owner or governor can apply a subscription policy to a registered prefix, bucket, or object to control who can access objects beginning with that prefix or in that bucket after it is registered in Immuta. Once a subscription policy is created and Immuta users are subscribed to the prefix, bucket, or object, Immuta calls the Access Grants API to create a grant for each subscribed user, specifying the following parameters in the payload so that Access Grants can create and store a grant for each user:
Access Grants location
READ
access
User or role principle
Registered prefix, bucket, or object
In the example below, a data owner registers the s3://research-data/*
bucket, and Immuta stores the connection information in the Immuta metadata database. Once the user, Taylor, is subscribed to s3://research-data/*
, Immuta calls the Access Grants API to create a grant for that user to allow them to read S3 data in that bucket:
To access S3 data registered in Immuta, users must be subscribed to the prefix, bucket, or object in Immuta, and their principals must be mapped to their Immuta user accounts. Once users are subscribed, they request temporary credentials from S3 Access Grants. Access Grants looks up the grant ID associated with the requester. If no matching grant exists, they receive an access denied error. If one exists, Access Grants assumes the IAM role associated with the location and requests temporary credentials that are scoped to the prefix, bucket, or object and permissions specified by the individual grant. Access Grants vends the credentials to the requester, who uses those temporary credentials to access the data in S3.
In the example below, Taylor requests temporary credentials from S3 Access Grants. Access Grants looks up the grant ID (1
) for that user, assumes the arn:aws:iam::123456:role/access-grants-role
IAM role for the location, and vends temporary credentials to Taylor, who then uses the credentials to access the research-data
bucket in S3:
Note that when accessing data through S3 Access Grants, the user or application interacts directly with the Access Grants API to request temporary credentials; Immuta does not act in this process at all. See the diagram below for an illustration of the process for accessing data through S3 Access Grants.
AWS services that support S3 Access Grants will request temporary credentials for users automatically. If users are not using a service that supports S3 Access Grants, they must have the permissions listed in the AWS documentation to call the Access Grants API directly themselves to request temporary credentials to access data through the access grant.
For a list of AWS services that support S3 Access Grants, see the AWS documentation.
Immuta's S3 integration allows data owners and governors to apply object-level access controls on data in S3 through subscription policies. When a user is subscribed to a registered prefix, bucket, or object, Immuta calls the Access Grants API to create an individual grant that narrows the scope of access within the location to that registered prefix, bucket, or object. See the diagram below for a visualization of this process.
When a user's entitlements change or a subscription policy is added to, updated, or deleted from a prefix, Immuta performs one of the following processes for each user subscribed to the registered prefix:
User added to the prefix: Immuta specifies a permission (READ
or READWRITE
) for each user and uses the Access Grants API to create an individual grant for each user.
User updated: Immuta deletes the current grant ID and creates a new one using the Access Grants API.
User deleted: Immuta deletes the grant ID using the Access Grants API.
Data policies, which provide more granular controls by redacting or masking values in a table, are not supported for S3.
Data owners can register an S3 prefix at any level in the S3 path by creating an Immuta data source. During this process, Immuta stores the connection information for use in subscription policies.
Each prefix added in the data registration workflow is created as a single Immuta data source, and a subscription policy added to a data source applies to any objects in that bucket or beginning with that prefix:
Therefore, data owners should register prefixes or buckets at the lowest level of access control they need for that data. Using the example above, if the data owner needed to allow different users to access s3://yellow-bucket/research-data/*
than those who should access s3://yellow-bucket/analyst-data/*
, the data owner must register the research-data/*
and analyst-data/*
prefixes separately and then apply a subscription policy to those prefixes:
When an S3 data source is deleted, Immuta deletes all the grants associated with that prefix, bucket, or object in that location.
Names are case-sensitive
The IAM role name and IAM user name are case-sensitive. See the AWS documentation for details.
Immuta supports mapping an Immuta user to one of the following AWS IAM principals:
IAM role principals: Only a single Immuta user can be mapped to an IAM role. This restriction prohibits enforcing policies on AWS users who could assume that role. Therefore, if using role principals, create a new user in Immuta that represents the role so that the role then has the permissions applied specifically to it.
See the protect data section for instructions on mapping principals to user accounts in Immuta.
The Amazon S3 integration will not interfere with existing legacy S3 integrations, and multiple S3 integrations can exist in a single Immuta tenant.
AWS services that support S3 Access Grants will request temporary credentials for users automatically. If users are not using a service that supports S3 Access Grants, they must have the permissions listed in the AWS documentation to call the Access Grants API directly themselves to request temporary credentials to access data through the access grant.
For a list of AWS services that support S3 Access Grants, see the AWS documentation.
During private preview, Immuta supports up to 500 prefixes (data sources) and up to 20 Immuta users that are mapped to S3 identities principals. This is a preview limitation that will be removed in a future phase of the integration.
S3 Access Grants allows 100,000 grants per region per account. Thus, if you have 5 Immuta users with access to 20,000 registered prefixes, you would reach this limit. See AWS documentation for details.
The following Immuta features are not currently supported by the integration in private preview:
Audit
Automatically syncing Immuta with AWS IAM identities: you cannot set the S3 User Type field to AWS IAM User when configuring your identity provider (IdP) in Immuta
Data policies
Schema monitoring
Tag ingestion
Permissions are a system-level mechanism that control what actions a user is allowed to take through the Immuta API and UI. Permissions can be added to any user by a user admin (any user with the USER_ADMIN
permission), but the permissions themselves are managed by Immuta and cannot be added or removed in the Immuta UI; however, custom permissions can be created on the app settings page.
The table below illustrates what Immuta permissions map to specific Immuta personas.
Persona | Permissions | Description |
---|---|---|
See Manage personas and permissions for guidance on adding and removing permissions.
Audience: System Administrators, Data Owners, and Data Users
Content Summary: This page describes the Azure Synapse integration, configuration options, and features.
See the Azure Synapse integration page for a tutorial on enabling the integration and these features through the App Settings page.
Project Workspaces | Tag Ingestion | User Impersonation | Native Query Audit | Multiple Integrations |
---|---|---|---|---|
A running Dedicated SQL pool
The Azure Synapse Analytics integration supports the following authentication method to install the integration and create data sources:
Username and Password: Users can authenticate with their Azure Synapse Analytics username and password.
Immuta cannot ingest tags from Synapse, but you can connect any of these supported external catalogs to work with your integration.
Impersonation allows users to query data as another Immuta user in Synapse. To enable user impersonation, see the User Impersonation page.
A user can configure multiple integrations of Synapse to a single Immuta instance.
Immuta does not support the following masking types in this integration because of limitations with Dedicated SQL pools (linked below). Any column assigned one of these masking types will be masked to NULL:
Reversible Masking: Synapse UDFs currently only support SQL, but Immuta needs to execute code (such as JavaScript or Python) to support this masking feature. See the Synapse Documentation for details.
Format Preserving Masking: Synapse UDFs currently only support SQL, but Immuta needs to execute code (such as JavaScript or Python) to support this masking feature. See the Synapse Documentation for details.
Regex: The built in string replace function does not support full regex. See the Synapse Documentation for details.
The delimiters configured when enabling the integration cannot be changed once they are set. To change the delimiters, the integration has to be disabled and re-enabled.
If the generated view name is more than 128 characters, then the view name is shortened to 128 characters. This could cause collisions between view names if the shortened version is the same for two different data sources.
For proper updates, the Dedicated SQL pools have to be running when changes are made to users or data sources in Immuta.
Identity managers are used with Immuta to provide authentication and fine-grained user entitlement. A number of identity managers can be configured and enabled in Immuta, each with a specific set of configuration options that enable Immuta to communicate with the IAM system and map the users, permissions, groups, and attributes into Immuta.
The Immuta IAM can be used as a complete solution for authentication and authorization. Group and attribute values within the Immuta IAM can be used to broker access to projects and data sources and to drive policies.
The Immuta IAM is enabled by default, so there are no additional configuration options needed to support this mode.
External identity managers configured in Immuta allow users to authenticate using an existing identity management system and can optionally be used to synchronize user groups and attributes into Immuta. The synchronization between Immuta and your external IAM is one-way: changes made to your users' entitlements or users added in Immuta will not be reflected in your external IAM. Each identity manager configured in Immuta is assigned a unique identifier, referred to as the IAM ID, and all users, groups, and attributes are associated with exactly one IAM ID.
The table below illustrates the features supported by each IAM protocol.
Feature | AD/LDAP | SAML 2.0 | OpenID Connect 1.0 |
---|---|---|---|
The table below illustrates common providers that support the protocols listed above. However, this list may not be all-inclusive, and if a provider stops supporting a protocol, Immuta may not fully support that provider.
Identity managers are added from the App Settings page. Features like default permissions, profile schema, group schema, group permissions, and external groups and attributes endpoint are managed from the App Settings page as well.
Each identity manager supports the configuration of default permissions. This configuration setting controls what permissions each user who logs in receives by default. These permissions are applied the first time each user logs in, and any changes to the default permissions will only apply to new users.
In the case where the default permissions are empty, new users receive no special permissions in Immuta and an administrator will need to grant them any permissions that they need. Alternatively, group permissions may be configured, in which case permissions will be evaluated based on the groups users belong to.
On the App Settings page, Application Admins can migrate user accounts from one identity manager to another.
Once this setting is enabled, Immuta checks user IDs when users log in against the IAM they are migrating from, so the user IDs for these accounts must match. (For example, if their userID in Immuta's built-in IAM is consumer@example.com
, their user ID in the new IAM should be consumer@example.com
.) Then, users' profiles will be moved to the new IAM, including their subscriptions, permissions, and pending requests.
If a user does not have an exact user ID match, a User Admin can manually migrate their account.
Immuta's Best Practices: Sync Attributes and Groups
When enabling SCIM, it is best to enable sync attributes and groups. If this is not done, the IAM performing provisioning will likely continue to try to perform updates that are otherwise blocked.
When configuring a SAML or OpenID IAM, Application Admins can enable SCIM support, which allows these IAMs to automatically create new users in Immuta and keep existing users up-to-date. Once enabled, the majority of the profile schema fields will be hidden and automatically synced from the SCIM response. The API key will be displayed to be used to configure provisioning in the external IAM. After the configuration is saved, it will be hashed. A new key can be regenerated here if the old key is ever lost.
If SCIM support is not enabled in a SAML configuration, administrators must disable relevant users in Immuta if they are removed from the IAM, since the IAM will not send Immuta those updates.
SCIM and Azure
In some instances, updates in Azure are instantly pushed to Immuta. In others, however, pushes update on a schedule (roughly every 40 minutes), and there is more than one sync event (i.e., users may be updated in the first event and user memberships in another).
SCIM will skip updates and will not inform Immuta that an attribute should be removed from a user in the following scenarios, even if the attribute mapping has been deleted from the IAM configuration on the Immuta app settings page:
Attribute is set to empty (removed) in Microsoft Entra ID
Attribute is deleted in Microsoft Entra ID
In both of these scenarios, Azure doesn’t send Immuta a payload to remove the attribute, as it considers the action a redundant export. As a result, the attribute values that previously existed in Microsoft Entra ID will not get removed from the user in Immuta.
To remediate this limitation, take one of the following actions:
Change the attribute to a non-impacting value other than empty in Microsoft Entra ID.
Alternatively, remove the attribute mapping from the attribute schema section of the IAM configuration on the Immuta app settings page. Then, trigger an update for that user in Microsoft Entra ID by making a change to any value for that user. Microsoft Entra ID will send an update for that user to Immuta, and Immuta will remove the attribute from the user. Note that if that attribute mapping is ever re-added in Immuta on the app settings page, that attribute will be added to the user again.
See Known issues for provisioning in Microsoft Entra ID for more details about this limitation.
Attribute mapping for SCIM is slightly different compared to the normal attribute mapping for IAMs. For SCIM mapping, the desired attribute prefix should be mapped to the relevant schema URN:
In Immuta this attribute would translate from SCIM Schema Attribute: “urn:ietf:params:scim:schemas:extension:enterprise:2.0:User:Test” into Immuta Attribute: “scimuser.Test”
LDAP Sync takes an existing and configured LDAP IAM and seeds Immuta with all of its users, subject to the intersection of the IAM's user search filter and the plugin's user search filter. When configuring an LDAP/Active Directory IAM , Application Admins can enable scheduled LDAP Sync; this will allow directory users to be registered within Immuta without the users having to log directly into Immuta.
Once enabled, LDAP Sync will automatically provision and sync users from LDAP on an approved schedule. The default is every hour, but can be adjusted to an organization's needs.
Application Admins can also enable pagination for LDAP Sync, which will be a predetermined page size when searching LDAP during this scheduled sync.
Each identity manager configured has a mapping of attributes from the source system into attributes on the user profile in Immuta.
Profile schema attributes provide general purpose user information and cannot be used as entitlements for policies.
Identity managers that support group synchronization will have a group schema configuration option. This defines how group attributes are mapped in Immuta.
This example is the group schema mapping for an LDAP/Active Directory IAM.
When an identity manager is configured to synchronize groups you will have the option to define a mapping of groups to Immuta permissions. Users who belong to one of the given groups will be granted the listed permissions automatically. Additionally, User Admins can add attributes in Immuta to groups from external IAMs.
If desired, an IAM system can be used for authentication and combined with an external REST endpoint to retrieve user groups and attributes. This option provides flexibility in exactly how groups and attributes are associated with users in Immuta.
/
/
/
/
This property enables the integration. Both the and the Starburst integration v2.0 can be enabled at the same time. The immuta.allowed.non.immuta.datasource.operations
property (explained below) must contain at least READ when both integrations are enabled.
Starburst allows you to enable multiple system access control providers at the same time. To do so, add providers to this property as comma-separated values. Immuta has tested the Immuta system access control provider alongside the . This approach allows Immuta to work with existing Starburst installations that have already configured an access control provider. Immuta does not manage all permissions in Starburst and will default to allowing access to anything Immuta does not manage so that the Starburst integration v2.0 complements existing controls. For example, if the Starburst integration v2.0 is configured to allow users write access to tables that are not protected by Immuta, you can still lock down write access for specific non-Immuta tables using an additional access control provider.
This property defines a comma-separated list of allowed operations for users on Immuta data sources they are subscribed to: READ
,WRITE
, and OWN
. (See the for details about the OWN
operation.) When set to WRITE
, all users granted access to a data source through a subscription policy are allowed read and write operations to data source schemas and tables. By default, this property is set to READ
, which blocks write operations on data source tables and schemas. If are enabled for your Immuta tenant, this property is set to READ,WRITE
by default, so users granted write access to a data source through a write access subscription policy are allowed read and write operations to data source schemas and tables.
This property defines a comma-separated list of allowed operations users will have on tables not registered as Immuta data sources: READ
, WRITE
, CREATE
, and OWN
. (See the for details about CREATE
and OWN
operations.) When set to READ
, users are allowed read operations on tables not registered as Immuta data sources. When set to WRITE
, users are allowed read and write operations on tables not registered as Immuta data sources. If this property is left empty, users will not get access to any tables outside Immuta. By default, this property is set to READ,WRITE
. If are enabled for your Immuta tenant, this property is set to READ,WRITE,OWN,CREATE
by default.
This property defines a comma-separated list of allowed operations for users on Immuta data sources they are subscribed to: READ
,WRITE
, and OWN
. (See the for details about the OWN
operation.) When set to WRITE
, all users granted access to a data source through a subscription policy are allowed read and write operations to data source schemas and tables. By default, this property is set to READ
, which blocks write operations on data source tables and schemas. If are enabled for your Immuta tenant, this property is set to READ,WRITE
by default, so users granted write access to a data source through a write access subscription policy are allowed read and write operations to data source schemas and tables.
This property defines a comma-separated list of allowed operations users will have on tables not registered as Immuta data sources: READ
, WRITE
, CREATE
, and OWN
. (See the for details about CREATE
and OWN
operations.) When set to READ
, users are allowed read operations on tables not registered as Immuta data sources. When set to WRITE
, users are allowed read and write operations on tables not registered as Immuta data sources. If this property is left empty, users will not get access to any tables outside Immuta. By default, this property is set to READ,WRITE
. If are enabled for your Immuta tenant, this property is set to READ,WRITE,OWN,CREATE
by default.
SAML SLO protocol | Example |
---|---|
SAML SLO protocol | Example |
---|---|
Provider | LDAP | SAML 2.0 | OpenID Connect 1.0 | SCIM 2.0 |
---|---|---|---|---|
1. The principal requests to log out of the service provider, or a timeout event initiates a logout request.
1. User logs out of Immuta.
2. The service provider sends a logout request to the session authority.
2. Immuta sends a logout request to Okta and terminates the user's Immuta session.
3. The session authority validates the signature and data in the request and sends a logout request to all the service providers for the current authenticated session (except the service provider from which the logout was initiated).
3. Okta validates the signature and data in the request and sends a logout request to all the other applications the user is logged in to.
4. The service providers terminate the sessions and send logout responses to the session authority indicating that the users has been logged out.
4. The other applications validate the signature and the data in the request and terminate the user's sessions in their application.
5. The session authority ends its own session with the principal.
5. Okta terminates its own session with the user.
6. The session authority sends a logout response message to the service provider from which the logout was initiated.
6. Okta sends a logout response message to Immuta.
1. The principal requests to log out of the session authority, or a timeout event initiates a logout request.
1. User logs out of Okta.
2. The session authority validates the signature and data in the request and sends a logout request message to all the service providers for the current authenticated session.
2. Okta validates the signature and data in the request and sends a logout request to all applications the user is logged in to.
3. The service providers validate the signature and data in the request and terminate the sessions.
3. Immuta and other applications validate the signature and data in the request and terminate the user's sessions.
4. The service providers terminate the sessions and send logout responses to the session authority indicating that the users has been logged out.
4. Immuta and other applications send a logout response to Okta to indicate the user has been logged out.
5. The session authority ends its own session with the principal.
5. Okta terminates its own session with the user.
Application admins
APPLICATION_ADMIN
These users have access to the administrative actions for the configuration of Immuta. They can
add external IAMs
configure email settings
Auditors
AUDIT
These users can access audit logs for their entire organization. Data owners can view audit logs for the data sources they own.
Data governors
GOVERNANCE
Data governors set global policies within Immuta, meaning they can restrict the ways that data is used within Immuta across multiple projects and data sources. Governors can also set purpose-based usage restrictions on projects, which can help limit the ways that data is used within Immuta. By default, governors can subscribe to data sources; however, this setting can be disabled on the app settings page to remove the governor's ability to create or subscribe to data sources. Additionally, users can be a governor and admin simultaneously by default, but this setting can also be changed to render the governor and admin roles mutually exclusive.
Data owners
To be a data owner, a user must have one of the following Immuta permissions or be manually assigned ownership of a data source:
CREATE_DATA_SOURCE
: Gives the user the ability to create data sources.
CREATE_DATA_SOURCE_IN_PROJECT
: Gives the user the ability to create data sources within a project.
Users who are manually assigned as owners of a data source do not need any Immuta permissions.
For data to be available in the Immuta platform, a data owner — the individual or team responsible for the data — needs to connect their data to Immuta. Once data is connected to Immuta, that data is called a data source. In the process of creating a data source, data owners are able to set policies on their data that restrict which users can access the data source, which rows within the data a user can access, and which columns within the data a user can see. Data owners can also view the audit page in Immuta, but they are limited to only viewing records related to the data sources they own.
Data users
Users do not need any permissions assigned to them to subscribe to data sources. However, they can have any of the Immuta permissions described below:
CREATE_FILTER
: Gives the user the ability to create and save a search filter.
CREATE_PROJECT
: Gives the user the ability to create projects.
IMPERSONATE_HDFS_USER
: When creating an HDFS data source, this allows the user to enter any HDFS user name to use when accessing data.
IMPERSONATE_USER
: Allows the user to impersonate another user when accessing data.
Data users query data that’s been made available through Immuta.
Project managers
PROJECT_MANAGEMENT
Project Managers oversee projects by creating, approving, or denying purposes in projects and adding and removing project data sources.
User admins
USER_ADMIN
These users have access to the administrative actions for managing users in Immuta. They can
create and manage users and groups
add and remove user permissions
create and manage user attributes
Read user groups on user login
Yes
Yes
No - it needs an external user info service.
Read user attributes on user login
Yes
Yes
No - it needs an external user info service.
Provisioning: SCIM 2.0 Support (users & groups)
No
Yes
Yes
Provisioning: Periodic directory sync (users & groups)
Yes
No
No
Read ALL directory groups for policy authoring
Yes
Yes, with SCIM.
Yes, with SCIM.
Consume attributes/groups from arbitrary sources
Yes, with a shim.
Yes, with a shim and only if NOT using SCIM.
Yes, with a shim and only if NOT using SCIM.
Query Engine SSO support
Yes
No - Exception: Okta customers can leverage their Okta LDAP interface to authenticate their users with the Query Engine using LDAP, while using SAML/OIDC-based SSO for the Immuta web application.
No - Exception: Okta customers can leverage their Okta LDAP interface to authenticate their users with the Query Engine using LDAP, while using SAML/OIDC-based SSO for the Immuta web application.
Active Directory
Yes
No
No
No
ADFS This provider only supports authentication with integrations, meaning users can authenticate to their integration, but their attributes will not be synced; attributes will only be synced when users authenticate with the Immuta UI.
No
Yes
Yes
No
Amazon Cognito This provider only supports authentication with integrations, meaning users can authenticate to their integration, but their attributes will not be synced; attributes will only be synced when users authenticate with the Immuta UI.
No
No
Yes
No
Centrify
Yes
Yes
Yes
No
Yes
Yes
Yes
No
JumpCloud
Yes
Yes
Yes
No
Keycloak This provider only supports authentication with integrations, meaning users can authenticate to their integration, but their attributes will not be synced; attributes will only be synced when users authenticate with the Immuta UI.
No
Yes
Yes
No
Microsoft Entra ID
No
Yes
Yes
Yes
Okta
Yes
Yes
Yes
Yes
OneLogin
Yes
Yes
Yes
Yes
OpenLDAP & other LDAP servers
Yes
No
No
No
Oracle Access Manager
No
Yes
Yes
Yes
Ping Identity
Yes
Yes
Yes
Yes
The Snowflake low row access policy mode improves query performance in Immuta's Snowflake integration by decreasing the number of Snowflake row access policies Immuta creates and by using table grants to manage user access.
Immuta manages access to Snowflake tables by administering Snowflake row access policies and column masking policies on those tables, allowing users to query them directly in Snowflake while policies are enforced.
Without Snowflake low row access policy mode enabled, row access policies are created and administered by Immuta in the following scenarios:
Table grants are disabled and a subscription policy that does not automatically subscribe everyone to the data source is applied. Immuta administers Snowflake row access policies to filter out all the rows to restrict access to the entire table when the user doesn't have privileges to query it. However, if table grants are disabled and a subscription policy is applied that grants everyone access to the data source automatically, Immuta does not create a row access policy in Snowflake. See the subscription policies page for details about these policy types.
Purpose-based policy is applied to a data source. A row access policy filters out all the rows of the table if users aren't acting under the purpose specified in the policy when they query the table.
Row-level security policy is applied to a data source. A row access policy filters out rows querying users don't have access to.
User impersonation is enabled. A row access policy is created for every Snowflake table registered in Immuta.
Deprecation notice
Support for using the Snowflake integration with low row access policy mode disabled has been deprecated. You must enable this feature and table grants for your integration to continue working in future releases. See the release notes for EOL dates.
Snowflake low row access policy mode is enabled by default to reduce the number of row access policies Immuta creates and improve query performance. Snowflake low row access policy mode requires
user impersonation to be disabled. User impersonation diminishes the performance of interactive queries because of the number of row access policies Immuta creates when it's enabled.
Project workspaces are not compatible with this feature.
Impersonation is not supported when the Snowflake low row access policy mode is enabled.
When a project member acts under a project's purposes, any matching purpose exceptions on tables will be honored, even if those tables exist outside the project. Project managers cannot assume approving a purpose means that the purposes of that project are limited to the tables in the project.
Project owners cannot limit masked joins to a single project. Turning masked joins on in a single project in Immuta enables masked joins across all of a subscriber's data sources, regardless of which projects the data sources belong to.
If you have Snowflake low row access policy mode enabled in private preview and have impersonation enabled, see these upgrade instructions. Otherwise, query performance will be negatively affected.
Snowflake low row access policy mode is enabled by default. However, you can disable or re-enable the feature by following the steps below.
Click the App Settings icon in the sidebar and scroll to the Global Integration Settings section.
Click the Enable Snowflake Low Row Access Policy Mode checkbox to disable the feature.
Click Save and confirm your configuration changes.
If you already have a Snowflake governance features integration configured, you don't need to reconfigure your integration. Your Snowflake policies automatically refresh when you enable or disable Snowflake low row access policy mode.
Click Save and Confirm your changes.
Click the App Settings icon in the sidebar and scroll to the Global Integration Settings section.
Click the Enable Snowflake Low Row Access Policy Mode checkbox to re-enable the feature.
Confirm to allow Immuta to automatically disable impersonation for the Snowflake integration. If you do not confirm, you will not be able to enable Snowflake low row access policy mode.
Click Save and confirm your configuration changes.
If you already have a Snowflake governance features integration configured, you don't need to reconfigure your integration. Your Snowflake policies automatically refresh when you enable or disable Snowflake low row access policy mode.
Configure your Snowflake integration with governance features enabled. Note that you will not be able to enable project workspaces or user impersonation with Snowflake low row access policy mode enabled.
Click Save and Confirm your changes.
Audience: System Administrators
Content Summary: This page describes the Python & SQL & R with Library Support cluster policy.
Py4j Security Disabled
In addition to support for Python, SQL, and R, this configuration adds support for additional Python libraries and utilities by disabling Databricks-native Py4j security.
This configuration does not rely on Databricks-native Py4j security to secure the cluster, while process isolation is still enabled to secure filesystem and network access from within Python processes. On an Immuta-enabled cluster, once Py4J security is disabled the Immuta SecurityManager is installed to prevent nefarious actions from Python in the JVM. Disabling Py4J security also allows for expanded Python library support, including many Python ML classes (such as LogisticRegression
, StringIndexer
, and DecisionTreeClassifier
) and dbutils.fs.
By default, all actions in R will execute as the root user. Among other things, this permits access to the entire filesystem (including sensitive configuration data). And without iptable restrictions, a user may freely access the cluster’s cloud storage credentials. To properly support the use of the R language, Immuta’s initialization script wraps the R and Rscript binaries to launch each command as a temporary, non-privileged user. This user has limited filesystem and network access. The Immuta SecurityManager is also installed to prevent users from bypassing policies and protects against the above vulnerabilities from within the JVM.
The SecurityManager will incur a small increase in performance overhead; average latency will vary depending on whether the cluster is homogeneous or heterogeneous. (In homogeneous clusters, all users are at the same level of groups/authorizations; this is enforced externally, rather than directly by Immuta.)
When users install third-party Java/Scala libraries, they will be denied access to sensitive resources by default. However, cluster administrators can specify which of the installed Databricks libraries should be trusted by Immuta.
A homogeneous cluster is recommended for configurations where Py4J security is disabled. If all users have the same level of authorization, there would not be any data leakage, even if a nefarious action was taken.
For full details on Databricks’ best practices in configuring clusters, please read their governance documentation.
Audience: System Administrators
Content Summary: This guide details how to manually update your Databricks cluster after changes to the Immuta init script or cluster policies are made.
If a Databricks cluster needs to be manually updated to reflect changes in the Immuta init script or cluster policies, you can remove and set up your integration again to get the updated policies and init script.
Log in to Immuta as an Application Admin.
Click the App Settings icon in the left sidebar and click the Integrations tab.
Your existing Databricks integration should be listed here; expand it and note the configuration values. Now select Remove to remove your integration.
Click Add Native Integration and select Databricks Integration to add a new integration.
Enter your Databricks integration settings again as configured previously.
Click Add Native Integration to add the integration, and then select Configure Cluster Policies to set up the updated cluster policies and init script.
Select the cluster policies you wish to use for your Immuta-enabled Databricks clusters.
Use the tabs below to view instructions for automatically pushing cluster policies and the init script (recommended) or manually updating your cluster policies.
Automatically Push Cluster Policies
Select Automatically Push Cluster Policies and enter your privileged Databricks access token. This token must have privileges to write to cluster policies.
Select Apply Policies to push the cluster policies and init script again.
Click Save and Confirm to deploy your changes.
Manually Update Cluster Policies
Download the init script and the new cluster policies to your local computer.
Click Save and Confirm to save your changes in Immuta.
Log in to your Databricks workspace with your administrator account to set up cluster policies.
Get the path you will upload the init script (immuta_cluster_init_script_proxy.sh
) to by opening one of the cluster policy .json
files and looking for the defaultValue
of the field init_scripts.0.dbfs.destination
. This should be a DBFS path in the form of dbfs:/immuta-plugin/hostname/immuta_cluster_init_script_proxy.sh
.
Click Data in the left pane to upload your init script to DBFS to the path you found above.
To find your existing cluster policies you need to update, click Compute in the left pane and select the Cluster policies tab.
Edit each of these cluster policies that were configured before and overwrite the contents of the JSON with the new cluster policy JSON you downloaded.
Restart any Databricks clusters using these updated policies for the changes to take effect.
Generally, Immuta prevents users from seeing data unless they are explicitly given access, which blocks access to raw sources in the underlying databases. However, in some native patterns (such as Snowflake), Immuta adds views to allow users access to Immuta sources but does not impede access to preexisting sources in the underlying database. Therefore, if a user had access in Snowflake to a table before Immuta was installed, they would still have access to that table after.
Unlike the example above, Databricks non-admin users will only see sources to which they are subscribed in Immuta, and this can present problems if organizations have a data lake full of non-sensitive data and Immuta removes access to all of it. The Limited Enforcement Scope feature addresses this challenge by allowing Immuta users to access any tables that are not protected by Immuta (i.e., not registered as a data source or a table in a native workspace). Although this is similar to how privileged users in Databricks operate, non-privileged users cannot bypass Immuta controls.
This feature is composed of two configurations:
Allowing non-Immuta reads: Immuta users with regular (unprivileged) Databricks roles may SELECT
from tables that are not registered in Immuta.
Allowing non-Immuta writes: Immuta users with regular (unprivileged) Databricks roles can run DDL commands and data-modifying commands against tables or spaces that are not registered in Immuta.
Additionally, Immuta supports auditing all queries run on a Databricks cluster, regardless of whether users touch Immuta-protected data or not. To configure Immuta to do so, navigate to the Enable Auditing of All Queries in Databricks section.
Non-Immuta Reads
This setting does not allow reading data directly with commands like spark.read.format("x"). Users are still required to read data and query tables using Spark SQL.
When non-Immuta reads are enabled, Immuta users will see all databases and tables when they run show databases and/or show tables. However, this does not mean they will be able to query all of them.
Enable non-Immuta Reads by setting this configuration in the Spark environment variables (recommended) or immuta_conf.xml
(not recommended):
Opt to adjust the cache duration by changing the default value in the Spark environment variables (recommended) or immuta_conf.xml
(not recommended). (Immuta caches whether a table has been exposed as an Immuta source to improve performance. The default caching duration is 1 hour.)
Non-Immuta Writes
These non-protected tables/spaces have the same exposure as detailed in the read section, but with the distinction that users can write data directly to these paths.
With non-Immuta writes enabled, it will be possible for users on the cluster to mix any policy-enforced data they may have access to via any registered data sources in Immuta with non-Immuta data, and write the ensuing result to a non-Immuta write space where it would be visible to others. If this is not a desired possibility, the cluster should instead be configured to only use Immuta’s native workspaces.
Enable non-Immuta Writes by setting this configuration in the Spark environment variables (recommended) or immuta_conf.xml
(not recommended):
Opt to adjust the cache duration by changing the default value in the Spark environment variables (recommended) or immuta_conf.xml
(not recommended). (Immuta caches whether a table has been exposed as an Immuta source to improve performance. The default caching duration is 1 hour.)
Enable support for auditing all queries run on a Databricks cluster (regardless of whether users touch Immuta-protected data or not) by setting this configuration in the Spark environment variables (recommended) or immuta_conf.xml
(not recommended):
The controls and default values associated with non-Immuta reads, non-Immuta writes, and audit functionality are outlined below.
Audience: System Administrators, Data Owners, and Data Users
Content Summary: This page describes the Databricks integration, configuration options, and features.
See the Databricks integration page for a tutorial on enabling Databricks and these features through the App Settings page.
Project Workspaces | Databricks Tag Ingestion | User Impersonation | Native Query Audit | Multiple Integrations |
---|---|---|---|---|
The table below outlines the integrations supported for various Databricks cluster configurations. For example, the only integration available to enforce policies on a cluster configured to run on Databricks Runtime 9.1 is the Databricks Spark integration.
Example cluster | Databricks Runtime | Unity Catalog in Databricks | Databricks Spark integration | Databricks Spark with Unity Catalog support | Databricks Unity Catalog integration |
---|---|---|---|---|---|
Legend:
The feature or integration is enabled.
The feature or integration is disabled.
Databricks instance: Premium tier workspace and Cluster access control enabled
Databricks instance has network level access to Immuta instance
Access to Immuta archives
Permissions and access to download (outside Internet access) or transfer files to the host machine
Recommended Databricks Workspace Configurations:
Note: Azure Databricks authenticates users with Microsoft Entra ID. Be sure to configure your Immuta instance with an IAM that uses the same user ID as does Microsoft Entra ID. Immuta's Spark security plugin will look to match this user ID between the two systems. See this Microsoft Entra ID page for details.
See this page for a list of Databricks Runtimes Immuta supports.
Immuta supports the Custom access mode.
Supported Languages:
Python
SQL
R (requires advanced configuration; work with your Immuta support professional to use R)
Scala (requires advanced configuration; work with your Immuta support professional to use Scala)
The Immuta Databricks integration supports the following Databricks features:
Change Data Feed: Databricks users can see the Databricks Change Data Feed on queried tables if they are allowed to read raw data and meet specific qualifications.
Databricks Libraries: Users can register their Databricks Libraries with Immuta as trusted libraries, allowing Databricks cluster administrators to avoid Immuta security manager errors when using third-party libraries.
External Metastores: Immuta supports the use of external metastores in local or remote mode.
Spark Direct File Reads: In addition to supporting direct file reads through workspace and scratch paths, Immuta allows direct file reads in Spark for file paths.
Users can have additional write access in their integration using project workspaces. Users can integrate a single or multiple workspaces with a single Immuta instance. For more details, see the Databricks Project Workspaces page.
The Immuta Databricks integration cannot ingest tags from Databricks, but you can connect any of these supported external catalogs to work with your integration.
Native impersonation allows users to natively query data as another Immuta user. To enable native user impersonation, see the Integration User Impersonation page.
Audit Limitations
Immuta will audit queries that come from interactive notebooks, notebook jobs, and JDBC connections, but will not audit Scala or R submit jobs. Furthermore, Immuta only audits Spark jobs that are associated with Immuta tables. Consequently, Immuta will not audit a query in a notebook cell that does not trigger a Spark job, unless immuta.spark.audit.all.queries
is set to true
; for more details about this configuration and auditing all queries in Databricks, see Limited Enforcement in Databricks.
Capturing the code or query that triggers the Spark plan makes audit records more useful in assessing what users are doing.
To audit the code or query that triggers the Spark plan, Immuta hooks into Databricks where notebook cells and JDBC queries execute and saves the cell or query text. Then, Immuta pulls this information into the audits of the resulting Spark jobs. Examples of a saved cell/query and the resulting audit record are provided on the Databricks JDBC and Notebook Cell Query Audit Logs page.
A user can configure multiple integrations of Databricks to a single Immuta instance and use them dynamically or with workspaces.
Immuta does not support Databricks clusters with Photon acceleration enabled.
When using Delta Lake, the API does not go through the normal Spark execution path. This means that Immuta's Spark extensions do not provide protection for the API. To solve this issue and ensure that Immuta has control over what a user can access, the Delta Lake API is blocked.
Spark SQL can be used instead to give the same functionality with all of Immuta's data protections.
Below is a table of the Delta Lake API with the Spark SQL that may be used instead.
Delta Lake API | Spark SQL |
---|
See here for a complete list of the .
When a table is created in a native workspace, you can merge a different Immuta data source from that workspace into that table you created.
Create a table in the native workspace.
Create a temporary view of the Immuta data source you want to merge into that table.
Use that temporary view as the data source you add to the project workspace.
Run the following command:
DeltaTable.convertToDelta | CONVERT TO DELTA parquet. |
DeltaTable.delete | DELETE FROM [table_identifier delta. |
DeltaTable.generate | GENERATE symlink_format_manifest FOR TABLE [table_identifier delta. |
DeltaTable.history | DESCRIBE HISTORY [table_identifier delta. |
DeltaTable.merge | MERGE INTO |
DeltaTable.update | UPDATE [table_identifier delta. |
DeltaTable.vacuum | VACUUM [table_identifier delta. |
This page provides a tutorial for enabling the Azure Synapse Analytics integration in Immuta. For an overview of the integration, see the Azure Synapse Analytics overview documentation.
A running Dedicated SQL pool is required.
Click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click the +Add Native Integration button and select Azure Synapse Analytics from the dropdown menu.
Complete the Host, Port, Immuta Database, and Immuta Schema fields.
Opt to check the Enable Impersonation box and customize the Impersonation Role name as needed. This will allow users to natively impersonate another user.
Opt to update the User Profile Delimiters. This will be necessary if any of the provided symbols are used in user profile information.
You have two options for configuring your Azure Synapse Analytic environment:
Automatic setup: Grant Immuta one-time use of credentials to automatically configure your environment and the integration.
Manual setup: Run the Immuta script in your Azure Synapse Analytics environment yourself to configure the integration.
Enter the username and password in the Privileged User Credentials section.
Select Manual.
Download, fill out the appropriate fields, and run the bootstrap master script and bootstrap script linked in the Setup section.
Enter the username and password in the Immuta System Account Credentials section. The username and password provided must be the credentials that were set in the bootstrap master script when you created the user.
Click Test Azure Synapse Analytics Connection.
Once the credentials are successfully tested, click Save.
Register Azure Synapse Analytics data in Immuta.
Click the App Settings icon in the left sidebar.
Navigate to the Integration Settings section and click the down arrow next to the Azure Synapse Analytics Integration.
Edit the field you want to change. Note any field shadowed is not editable, and the integration must be disabled and re-installed to change it.
Enter Username and Password.
Immuta requires temporary, one-time use of credentials with specific permissions.
When performing edits to an integration, Immuta requires temporary, one-time use of credentials of a Superuser or a user with the following permissions:
Manage GRANTS
Alternatively, you can download the Edit Script and run it in Azure Synapse Analytics.
Click Validate Credentials.
Click Save.
Click Confirm.
Click the App Settings icon in the left sidebar.
Navigate to the Integration Settings section and click the down arrow next to the Azure Synapse Analytics Integration.
Click the checkbox to disable the integration.
Enter the username and password that were used to initially configure the integration and click Validate Credentials.
Click Save.
Click Confirm.
Deprecation notice
This integration has been deprecated and replaced by the Databricks Unity Catalog integration.
This page provides a tutorial for enabling the native Databricks SQL integration in Immuta. For an overview of the integration, see the Databricks SQL Overview documentation. Native SQL with Databricks SQL is currently in Public Preview. Please provide feedback on any issues you encounter, as well as insight regarding how you would like this feature to evolve in the future.
A functional Databricks SQL environment: For guidance in setting up and using a Databricks SQL environment, see the Get started with Databricks SQL guide in the Databricks documentation.
Databricks personal access token: Your organization's SQL Analytics administrator must generate a Databricks personal access token that will allow users to authenticate to the Databricks REST API and Immuta to connect to SQL endpoints. Databricks will only display this personal access token once, so be sure to copy and save it. If an administrator does not generate the token, it will not carry appropriate privileges to allow Immuta to create the Immuta database inside Databricks SQL when the integration is enabled and an error will be displayed in the Immuta UI.
Log in to Immuta and click the App Settings icon in the left sidebar.
Click the Integrations tab.
Click + Add Native Integration and select Databricks SQL (Public Preview) from the dropdown menu.
In Databricks, navigate to the Databricks SQL page in your Databricks workspace, click Endpoints, and then click the name of the SQL Analytics endpoint you want to configure in Immuta.
Use the information on the Connection Details page to fill in the following information in the Immuta UI:
Host: Use the Server Hostname from Databricks (e.g., https://company.cloud.databricks.com
)
HTTP Path: Use the HTTP Path from Databricks (e.g., /sq/1.0/endpoints/fff6d6eb3a9718cf9
)
The value in the Immuta Database field will be the name of the database that Immuta creates in Databricks SQL Analytics. Opt to change the default name, provided it doesn’t introduce a naming collision in your Databricks environment.
Enter the personal access token that was generated by a SQL Analytics administrator (not a user), and then click Test Databricks SQL Connection.
Click Save. Note that if you enter a personal access token that was generated by a SQL Analytics user, you won't be able to save the configuration successfully.
In Databricks SQL, revoke all privileges from users on databases that contain the backing tables in your SQL Endpoint. This will force users to go through the protected Immuta database to access data.
Once Databricks SQL has been successfully enabled in Immuta, Immuta will perform the following automated tasks:
Create an Immuta database.
Grant usage and select privileges to users on the Immuta database.
Create a system table on the Immuta database called <immuta_database_name>.__immuta_profiles
.
Deny SELECT on <immuta_database_name>.__immuta_profiles
to users.
Create a view called <immuta_database_name>.__immuta_user
, which is equivalent to SELECT * FROM <immuta_database_name>.__immuta_profiles WHERE immuta__userid = current_user
.
Add your SQL Analytics user accounts in Databricks SQL and give them access to the SQL Analytics endpoint as you normally would in Databricks.
Immuta requires an underlying data source in SQL Analytics to have an owner. To test if an object has an owner, run SHOW GRANT ON <object-name>
. If you do not see an entry with ActionType OWN
, the object does not have an owner. When table access control is disabled on a cluster or SQL endpoint, owners are not registered when a database, table, or view is created. You must either enable table access control on your cluster and SQL endpoint, or an admin must assign an owner to the object.
To assign an owner to the object, run the following command:
Register Databricks securables in Immuta.
Click the App Settings icon in the left sidebar.
Navigate to the Integration Settings section and click the down arrow next to the Databricks SQL Integration.
Edit the field you want to change. Note any field shadowed is not editable, and the integration must be disabled and re-installed to change it.
Click Validate Credentials.
Click Save.
Click Confirm.
Click the App Settings icon in the left sidebar.
Navigate to the Integration Settings section and click the down arrow next to the Databricks SQL Integration.
Click the checkbox to disable the integration.
Enter the username and password that were used to initially configure the integration and click Validate Credentials.
Click Save.
Click Confirm.
To add Databricks data sources in Immuta, follow this tutorial.
Cluster 1
9.1
Unavailable
Unavailable
Cluster 2
10.4
Unavailable
Unavailable
Cluster 3
11.3
Unavailable
Cluster 4
11.3
Cluster 5
11.3
Deprecation notice
Support for this integration has been deprecated. Use the Starburst (Trino) v2.0 integration instead.
Immuta connects to Starburst (Trino) as a plugin integration. This allows Immuta to apply policies directly in Starburst (Trino) without data flowing through a proxy. Users can work with their existing tools (querying, reporting, etc.) and have per-user policies applied into views at query time.
Once the plugin has been pushed out to all nodes, administrators create an immuta
catalog that is managed by the custom Immuta Trino connector that generates the list of available schemas and views at query time based on the user making the request. When a user executes a query against one of the Immuta views, the connector dynamically generates the view definition and provides that to the Trino execution engine, which then connects to the backing catalogs and retrieves the data with appropriate policy enforcement.
This integration uses an immuta-trino
plugin to create policy-enforced view definitions that users access through an immuta
catalog. (Note that even though the plugin is named immuta-trino
it works and comes pre-installed with Starburst Enterprise.) When Starburst (Trino) tables are registered in Immuta as data sources, these data sources are dynamically generated as views in the immuta
catalog on the Starburst (Trino) node. Then, users subscribed to those data sources in Immuta query the corresponding protected views in Starburst (Trino).
Changes to policies, user attributes, or data sources registered in Immuta trigger webhooks that keep these views up-to-date, empowering users to query policy-enforced data.
An Immuta Application Administrator configures the Starburst (Trino) integration, creating an Immuta catalog and connector on their Starburst (Trino) node.
Immuta creates a catalog inside the configured Starburst (Trino) node.
A Data Owner registers Starburst (Trino) tables in Immuta as data sources. A Data Owner, Data Governor, or Administrator creates or changes a policy or user in Immuta.
Data source metadata, tags, user metadata, and policy definitions are stored in Immuta's Metadata Database.
The Immuta connector generates and provides the view definition to the Trino Execution Engine.
A Starburst (Trino) user who is subscribed to the data source in Immuta queries the corresponding table directly in Starburst (Trino) through the immuta
database.
Using the querying user's project, purpose, and entitlements, Immuta applies policies to the views at query time, so the user sees policy-enforced data.
/
/