LogoLogo
2024.2
  • Immuta Documentation - 2024.2
  • What is Immuta?
  • Self-Managed Deployment
    • Getting Started
    • Deployment Requirements
    • Install
      • Managed Public Cloud
      • Red Hat OpenShift
      • Generic Installation
      • Immuta in an Air-Gapped Environment
      • Deploy Immuta without Elasticsearch
    • Configure
      • Ingress Configuration
      • Cosign Verification
      • TLS Configuration
      • Immuta in Production
      • External Cache Configuration
      • Rotating Credentials
      • Enabling Legacy Query Engine and Fingerprint
    • Upgrade
      • Upgrade Immuta
      • Upgrade to Immuta 2024.2 LTS
    • Disaster Recovery
    • Troubleshooting
    • Conventions
    • Release Notes
  • Data and Integrations
    • Immuta Integrations
    • Snowflake
      • Getting Started
      • How-to Guides
        • Configure a Snowflake Integration
        • Snowflake Table Grants Migration
        • Edit or Remove Your Snowflake Integration
        • Integration Settings
          • Enable Snowflake Table Grants
          • Use Snowflake Data Sharing with Immuta
          • Configure Snowflake Lineage Tag Propagation
          • Enable Snowflake Low Row Access Policy Mode
            • Upgrade Snowflake Low Row Access Policy Mode
      • Reference Guides
        • Snowflake Integration
        • Snowflake Data Sharing
        • Snowflake Lineage Tag Propagation
        • Snowflake Low Row Access Policy Mode
        • Snowflake Table Grants
        • Warehouse Sizing Recommendations
      • Phased Snowflake Onboarding Concept Guide
    • Databricks Unity Catalog
      • Getting Started
      • How-to Guides
        • Configure a Databricks Unity Catalog Integration
        • Migrate to Unity Catalog
      • Databricks Unity Catalog Integration Reference Guide
    • Databricks Spark
      • How-to Guides
        • Configuration
          • Simplified Databricks Configuration
          • Manual Databricks Configuration
          • Manually Update Your Databricks Cluster
          • Install a Trusted Library
        • DBFS Access
        • Limited Enforcement in Databricks
        • Hide the Immuta Database in Databricks
        • Run spark-submit Jobs on Databricks
        • Configure Project UDFs Cache Settings
        • External Metastores
      • Reference Guides
        • Databricks Spark Integration
        • Databricks Spark Pre-Configuration Details
        • Configuration Settings
          • Cluster Policies
            • Python & SQL
            • Python & SQL & R
            • Python & SQL & R with Library Support
            • Scala
            • Sparklyr
          • Environment Variables
          • Ephemeral Overrides
          • Py4j Security Error
          • Scala Cluster Security Details
          • Databricks Security Configuration for Performance
        • Databricks Change Data Feed
        • Databricks Libraries Introduction
        • Delta Lake API
        • Spark Direct File Reads
        • Databricks Metastore Magic
    • Starburst (Trino)
      • Getting Started
      • How-to Guides
        • Configure Starburst (Trino) Integration
        • Customize Read and Write Access Policies for Starburst (Trino)
      • Starburst (Trino) Integration Reference Guide
    • Redshift
      • Getting Started
      • How-to Guides
        • Configure Redshift Integration
        • Configure Redshift Spectrum
      • Reference Guides
        • Redshift Integration
        • Redshift Pre-Configuration Details
    • Azure Synapse Analytics
      • Getting Started
      • Configure Azure Synapse Analytics Integration
      • Reference Guides
        • Azure Synapse Analytics Integration
        • Azure Synapse Analytics Pre-Configuration Details
    • Amazon S3
    • Google BigQuery
    • Legacy Integrations
      • Securing Hive and Impala Without Sentry
      • Enabling ImmutaGroupsMapping
    • Registering Metadata
      • Data Sources in Immuta
      • Register Data Sources
        • Create a Data Source
        • Create an Amazon S3 Data Source
        • Create a Google BigQuery Data Source
        • Bulk Create Snowflake Data Sources
      • Data Source Settings
        • How-to Guides
          • Manage Data Sources and Data Source Settings
          • Manage Data Source Members
          • Manage Access Requests and Tasks
          • Manage Data Dictionary Descriptions
          • Disable Immuta from Sampling Raw Data
        • Data Source Health Checks Reference Guide
      • Schema Monitoring
        • How-to Guides
          • Run Schema Monitoring and Column Detection Jobs
          • Manage Schema Monitoring
        • Reference Guides
          • Schema Monitoring
          • Schema Projects
        • Why Use Schema Monitoring?
    • Catalogs
      • Getting Started with External Catalogs
      • Configure an External Catalog
      • Reference Guides
        • External Catalogs
        • Custom REST Catalogs
          • Custom REST Catalog Interface Endpoints
    • Tags
      • How-to Guides
        • Create and Manage Tags
        • Add Tags to Data Sources and Projects
      • Tags Reference Guide
  • People
    • Getting Started
    • Identity Managers (IAMs)
      • How-to Guides
        • Microsoft Entra ID
        • Okta LDAP Interface
        • Okta and OpenID Connect
        • Integrate Okta SAML SCIM with Immuta
        • OneLogin with OpenID
        • Configure SAML IAM Protocol
      • Reference Guides
        • Identity Managers
        • SAML Single Logout
        • SAML Protocol Configuration Options
    • Immuta Users
      • How-to Guides
        • Managing Personas and Permissions
        • Manage Attributes and Groups
        • User Impersonation
        • External User ID Mapping
        • External User Info Endpoint
      • Reference Guides
        • Attributes and Groups in Immuta
        • Permissions and Personas
  • Discover Your Data
    • Getting Started
    • Introduction
    • Architecture
    • Data Discovery
      • How-to Guides
        • Enable Sensitive Data Discovery (SDD)
        • Manage Identification Frameworks
        • Manage Patterns
        • Manage Rules
        • Manage SDD on Data Sources
        • Manage Global SDD Settings
        • Migrate From Legacy to Native SDD
      • Reference Guides
        • How Competitive Pattern Analysis Works
        • Built-in Pattern Reference
        • Built-in Discovered Tags Reference
    • Data Classification
      • How-to Guides
        • Activate Classification Frameworks
        • Adjust Identification and Classification Framework Tags
        • How to Use a Built-In Classification Framework with Your Own Tags
      • Built-in Classification Frameworks Reference Guide
  • Detect Your Activity
    • Getting Started
      • Monitor and Secure Sensitive Data Platform Query Activity
        • User Identity Best Practices
        • Integration Architecture
        • Snowflake Roles Best Practices
        • Register Data Sources
        • Automate Entity and Sensitivity Discovery
        • Detect with Discover: Onboarding Guide
        • Using Immuta Detect
      • General Immuta Configuration
        • User Identity Best Practices
        • Integration Architecture
        • Databricks Roles Best Practices
        • Register Data Sources
    • Introduction
    • Audit
      • How-to Guides
        • Export Audit Logs to S3
        • Export Audit Logs to ADLS
        • Run Governance Reports
      • Reference Guides
        • Universal Audit Model (UAM)
        • Snowflake Query Audit Logs
        • Databricks Unity Catalog Audit Logs
        • Databricks Query Audit Logs
        • Starburst (Trino) Query Audit Logs
        • UAM Schema
        • Audit Export CLI
        • Governance Report Types
      • Deprecated Audit Guides
        • Legacy to UAM Migration
        • Download Audit Logs
        • System Audit Logs
    • Detection
      • Use the Detect Dashboards
      • Reference Guides
        • Detect
        • Detect Dashboards
        • Unknown Users in Audit Logs
    • Monitors
      • Manage Monitors and Observations
      • Detect Monitors Reference Guide
  • Secure Your Data
    • Getting Started with Secure
      • Automate Data Access Control Decisions
        • The Two Paths: Orchestrated RBAC and ABAC
        • Managing User Metadata
        • Managing Data Metadata
        • Author Policy
        • Test and Deploy Policy
      • Compliantly Open More Sensitive Data for ML and Analytics
        • Managing User Metadata
        • Managing Data Metadata
        • Author Policy
      • Federated Governance for Data Mesh and Self-Serve Data Access
        • Defining Domains
        • Managing Data Products
        • Managing Data Metadata
        • Apply Federated Governance
        • Discover and Subscribe to Data Products
    • Introduction
      • Scalability and Evolvability
      • Understandability
      • Distributed Stewardship
      • Consistency
      • Availability of Data
    • Authoring Policies in Secure
      • Authoring Policies at Scale
      • Data Engineering with Limited Policy Downtime
      • Subscription Policies
        • How-to Guides
          • Author a Subscription Policy
          • Author an ABAC Subscription Policy
          • Subscription Policies Advanced DSL Guide
          • Author a Restricted Subscription Policy
          • Clone, Activate, or Stage a Global Policy
        • Reference Guides
          • Subscription Policies
          • Subscription Policy Access Types
          • Advanced Use of Special Functions
      • Data Policies
        • Overview
        • How-to Guides
          • Author a Masking Data Policy
          • Author a Minimization Policy
          • Author a Purpose-Based Restriction Policy
          • Author a Restricted Data Policy
          • Author a Row-Level Policy
          • Author a Time-Based Restriction Policy
          • Certifications Exemptions and Diffs
          • External Masking Interface
        • Reference Guides
          • Data Policy Types
          • Masking Policies
          • Row-Level Policies
          • Custom WHERE Clause Functions
          • Data Policy Conflicts and Fallback
          • Custom Data Policy Certifications
          • Orchestrated Masking Policies
    • Domains
      • Getting Started with Domains
      • Domains Reference Guide
    • Projects and Purpose-Based Access Control
      • Projects and Purpose Controls
        • Getting Started
        • How-to Guides
          • Create a Project
          • Create and Manage Purposes
          • Adjust a Policy
          • Project Management
            • Manage Projects and Project Settings
            • Manage Project Data Sources
            • Manage Project Members
        • Reference Guides
          • Projects and Purposes
          • Policy Adjustments
        • Why Use Purposes?
      • Equalized Access
        • Manage Project Equalization
        • Project Equalization Reference Guide
        • Why Use Project Equalization?
      • Masked Joins
        • Enable Masked Joins
        • Why Use Masked Joins?
      • Writing to Projects
        • How-to Guides
          • Create and Manage Snowflake Project Workspaces
          • Create and Manage Databricks Project Workspaces
          • Write Data to the Workspace
        • Reference Guides
          • Project Workspaces
          • Project UDFs (Databricks)
    • Data Consumers
      • Subscribe to a Data Source
      • Query Data
        • Querying Snowflake Data
        • Querying Databricks Data
        • Querying Databricks SQL Data
        • Querying Starburst (Trino) Data
        • Querying Redshift Data
        • Querying Azure Synapse Analytics Data
      • Subscribe to Projects
  • Application Settings
    • How-to Guides
      • App Settings
      • BI Tools
        • BI Tool Configuration Recommendations
        • Power BI Configuration Example
        • Tableau Configuration Example
      • Add a License Key
      • Add ODBC Drivers
      • Manage Encryption Keys
      • System Status Bundle
    • Reference Guides
      • Data Processing, Encryption, and Masking Practices
      • Metadata Ingestion
  • Releases
    • Immuta v2024.2 Release Notes
    • Immuta Release Lifecycle
    • Immuta LTS Changelog
    • Immuta Support Matrix Overview
    • Immuta CLI Release Notes
    • Immuta Image Digests
    • Preview Features
      • Features in Preview
    • Deprecations
  • Developer Guides
    • The Immuta CLI
      • Install and Configure the Immuta CLI
      • Manage Your Immuta Tenant
      • Manage Data Sources
      • Manage Sensitive Data Discovery
        • Manage Sensitive Data Discovery Rules
        • Manage Identification Frameworks
        • Run Sensitive Data Discovery on Data Sources
      • Manage Policies
      • Manage Projects
      • Manage Purposes
    • The Immuta API
      • Integrations API
        • Getting Started
        • How-to Guides
          • Configure an Amazon S3 Integration
          • Configure an Azure Synapse Analytics Integration
          • Configure a Databricks Unity Catalog Integration
          • Configure a Google BigQuery Integration
          • Configure a Redshift Integration
          • Configure a Snowflake Integration
          • Configure a Starburst (Trino) Integration
        • Reference Guides
          • Integrations API Endpoints
          • Integration Configuration Payload
          • Response Schema
          • HTTP Status Codes and Error Messages
      • Immuta V2 API
        • Data Source Payload Attribute Details
        • Data Source Request Payload Examples
        • Create Policies API Examples
        • Create Projects API Examples
        • Create Purposes API Examples
      • Immuta V1 API
        • Authenticate with the API
        • Configure Your Instance of Immuta
          • Get Fingerprint Status
          • Get Job Status
          • Manage Frameworks
          • Manage IAMs
          • Manage Licenses
          • Manage Notifications
          • Manage Sensitive Data Discovery (SDD)
          • Manage Tags
          • Manage Webhooks
          • Search Filters
        • Connect Your Data
          • Create and Manage an Amazon S3 Data Source
          • Create an Azure Synapse Analytics Data Source
          • Create an Azure Blob Storage Data Source
          • Create a Databricks Data Source
          • Create a Presto Data Source
          • Create a Redshift Data Source
          • Create a Snowflake Data Source
          • Create a Starburst (Trino) Data Source
          • Manage the Data Dictionary
        • Manage Data Access
          • Manage Access Requests
          • Manage Data and Subscription Policies
          • Manage Domains
          • Manage Write Policies
            • Write Policies Payloads and Response Schema Reference Guide
          • Policy Handler Objects
          • Search Audit Logs
          • Search Connection Strings
          • Search for Organizations
          • Search Schemas
        • Subscribe to and Manage Data Sources
        • Manage Projects and Purposes
          • Manage Projects
          • Manage Purposes
        • Generate Governance Reports
Powered by GitBook
On this page
  • Unity Catalog object model
  • Feature support
  • Architecture
  • Policy enforcement
  • Project-scoped purpose exceptions for Databricks Unity Catalog
  • Policy exemption groups
  • Policy support with hive_metastore
  • Authentication methods
  • Immuta data sources in Unity Catalog
  • External data connectors and query-federated tables
  • Query audit
  • Configuration requirements
  • Supported Databricks cluster configurations
  • Unity Catalog caveats
  • Azure Databricks Unity Catalog limitation
  • Feature limitations
  • Known issue
  • Next

Was this helpful?

Export as PDF
  1. Data and Integrations
  2. Databricks Unity Catalog

Databricks Unity Catalog Integration Reference Guide

Last updated 16 days ago

Was this helpful?

Other versions

  • SaaS
  • 2024.3

Copyright © 2014-2024 Immuta Inc. All rights reserved.

Immuta’s integration with Unity Catalog allows you to enforce fine-grained access controls on Unity Catalog securable objects with Immuta policies. Instead of manually creating UDFs or granting access to each table in Databricks, you can author your policies in Immuta and have Immuta manage and orchestrate Unity Catalog access-control policies on your data in Databricks clusters or SQL warehouses:

  • Subscription policies: Immuta subscription policies automatically grant and revoke access to specific Databricks securable objects.

  • : Immuta data policies enforce row- and column-level security.

Unity Catalog object model

Unity Catalog uses the following hierarchy of data objects:

  • Metastore: Created at the account level and is attached to one or more Databricks workspaces. The metastore contains metadata of all the catalogs, schemas, and tables available to query. All clusters on that workspace use the configured metastore and all workspaces that are configured to use a single metastore share those objects.

  • Catalog: Sits on top of schemas (also called databases) and tables to manage permissions across a set of schemas

  • Schema: Organizes tables and views

  • Table-etc: Table (managed or external tables), view, volume, model, and function

For details about the Unity Catalog object model, see the .

Feature support

The Databricks Unity Catalog integration supports

  • :

    • applying column masks and row filters on specific securable objects

    • applying subscription polices on tables and views

  • enforcing Unity Catalog access controls, even if Immuta becomes disconnected

  • allowing non-Immuta reads and writes

  • using Photon

  • using a proxy server

Architecture

Immuta uses this service principal to run queries that set up user-defined functions (UDFs) and other data necessary for policy enforcement. Upon enabling the integration, Immuta will create a catalog that contains these schemas:

  • immuta_system: Contains internal Immuta data.

  • immuta_policies_n: Contains policy UDFs.

When policies require changes to be pushed to Unity Catalog, Immuta updates the internal tables in the immuta_system schema with the updated policy information. If necessary, new UDFs are pushed to replace any out-of-date policies in the immuta_policies_n schemas and any row filters or column masks are updated to point at the new policies. Many of these operations require compute on the configured Databricks cluster or SQL warehouse, so compute must be available for these policies to succeed.

Policy enforcement

Immuta’s Unity Catalog integration applies Databricks table-, row-, and column-level security controls that are enforced natively within Databricks. Immuta's management of these Databricks security controls is automated and ensures that they synchronize with Immuta policy or user entitlement changes.

  • Row-level security: Immuta applies SQL UDFs to restrict access to rows for querying users.

  • Column-level security: Immuta applies column-mask SQL UDFs to tables for querying users. These column-mask UDFs run for any column that requires masking.

The Unity Catalog integration supports the following policy types:

    • Conditional masking

    • Constant

    • Custom masking

    • Hashing

    • Null

    • Rounding (date and numeric rounding)

    • Matching (only show rows where)

      • Custom WHERE

      • Never

      • Where user

      • Where value in column

    • Minimization

    • Time-based restrictions

Project-scoped purpose exceptions for Databricks Unity Catalog

Public preview: This feature is available to select accounts. Reach out to your Immuta representative to enable this feature.

Databricks Unity Catalog views

If you are using views in Databricks Unity Catalog, one of the following must be true for project-scoped purpose exceptions to apply to the views in Databricks:

  • The view and underlying table are registered as Immuta data sources and added to a project: If a view and its underlying table are both added as Immuta data sources, both of these assets must be added to the project for the project-scoped purpose exception to apply. If a view and underlying table are both added as data sources but the table is not added to an Immuta project, the purpose exception will not apply to the view because Databricks does not support fine-grained access controls on views.

  • Only the underlying table is registered as an Immuta data source and added to a project: If only the underlying table is registered as an Immuta data source but the view is not registered, the purpose exception will apply to both the table and corresponding view in Databricks. Views are the only Databricks object that will have Immuta policies applied to them even if they're not registered as Immuta data sources (as long as their underlying tables are registered).

Policy exemption groups

Some users may need to be exempt from masking and row-level policy enforcement. When you add user accounts to the configured exemption group in Databricks, Immuta will not enforce policies for those users. Exemption groups are created when the Unity Catalog integration is configured, and no policies will apply to these users' queries, despite any policies enforced on the tables they query.

The principal used to register data sources in Immuta will be automatically added to this exemption group for that Databricks table. Consequently, users added to this list and used to register data sources in Immuta should be limited to service accounts.

Policy support with hive_metastore

When enabling Unity Catalog support in Immuta, the catalog for all Databricks data sources will be updated to point at the default hive_metastore catalog. Internally, Databricks exposes this catalog as a proxy to the workspace-level Hive metastore that schemas and tables were kept in before Unity Catalog. Since this catalog is not a real Unity Catalog catalog, it does not support any Unity Catalog policies. Therefore, Immuta will ignore any data sources in the hive_metastore in any Databricks Unity Catalog integration, and policies will not be applied to tables there.

Authentication methods

The Databricks Unity Catalog integration supports the following authentication methods to configure the integration and create data sources:

Immuta data sources in Unity Catalog

External data connectors and query-federated tables

Query audit

Access requirements

For Databricks Unity Catalog audit to work, Immuta must have, at minimum, the following access.

  • USE CATALOG on the system catalog

  • USE SCHEMA on the system.access schema

  • SELECT on the following system tables:

    • system.access.audit

    • system.access.table_lineage

    • system.access.column_lineage

Configuration requirements

Supported Databricks cluster configurations

The table below outlines the integrations supported for various Databricks cluster configurations. For example, the only integration available to enforce policies on a cluster configured to run on Databricks Runtime 9.1 is the Databricks Spark integration.

Example cluster
Databricks Runtime
Unity Catalog in Databricks
Databricks Spark integration
Databricks Unity Catalog integration

Cluster 1

9.1

Unavailable

Unavailable

Cluster 2

10.4

Unavailable

Unavailable

Cluster 3

11.3

Unavailable

Cluster 4

11.3

Cluster 5

11.3

Legend:

Unity Catalog caveats

  • Row access policies with more than 1023 columns are unsupported. This is an underlying limitation of UDFs in Databricks. Immuta will only create row access policies with the minimum number of referenced columns. This limit will therefore apply to the number of columns referenced in the policy and not the total number in the table.

  • If you disable table grants, Immuta revokes the grants. Therefore, if users had access to a table before enabling Immuta, they’ll lose access.

  • You must use the global regex flag (g) when creating a regex masking policy in this integration, and you cannot use the case insensitive regex flag (i) when creating a regex masking policy in this integration. See the examples below for guidance:

    • regex with a global flag (supported): /^ssn|social ?security$/g

    • regex without a global flag (unsupported): /^ssn|social ?security$/

    • regex with a case insensitive flag (unsupported): /^ssn|social ?security$/gi

    • regex without a case insensitive flag (supported): /^ssn|social ?security$/g

Azure Databricks Unity Catalog limitation

If a registered data source is owned by a Databricks group at the table level, then the Unity Catalog integration cannot apply data masking policies to that table in Unity Catalog.

Therefore, set all table-level ownership on your Unity Catalog data sources to an individual user or service principal instead of a Databricks group. Catalogs and schemas can still be owned by a Databricks group, as ownership at that level doesn't interfere with the integration.

Feature limitations

The following features are currently unsupported:

  • Databricks change data feed support

  • Multiple IAMs on a single cluster

  • Column masking policies on views

  • Mixing masking policies on the same column

  • Row-redaction policies on views

  • R and Scala cluster support

  • Scratch paths

  • User impersonation

  • Policy enforcement on raw Spark reads

  • Python UDFs for advanced masking functions

  • Direct file-to-SQL reads

  • Data policies on ARRAY, MAP, or STRUCT type columns

  • Shallow clones

Known issue

Snippets for Databricks data sources may be empty in the Immuta UI.

Next

Unity Catalog supports managing permissions account-wide in Databricks through controls applied directly to objects in the metastore. To establish a connection with Databricks and apply controls to securable objects within the metastore, Immuta requires a service principal with permissions to manage all data protected by Immuta. (OAuth M2M) or a personal access token (PAT) can be provided for Immuta to authenticate as the service principal. (See the for a list of specific Databricks privileges.)

Table-level security: Immuta manages and privileges on securable objects in Databricks through subscription policies. When you create a subscription policy in Immuta, Immuta uses the Unity Catalog API to issue GRANTS or REVOKES against the catalog, schema, or table in Databricks for every user affected by that subscription policy.

Regex: You must use the global regex flag (g) when creating a regex masking policy in this integration. You cannot use the case insensitive regex flag (i) when creating a regex masking policy in this integration. See the for examples.

Project-scoped purpose exceptions for Databricks Unity Catalog integrations allow you to apply to Databricks data sources in a project. As a result, users can only access that data when they are working within that specific project.

However, with you can use hive_metastore and enforce subscription and data policies with the .

Personal access token (PAT): This is the access token for the Immuta service principal. This service principal must have the metastore privileges listed in the section for the metastore associated with the Databricks workspace. If this token is configured to expire, update this field regularly for the integration to continue to function.

OAuth machine-to-machine (M2M): Immuta uses the to integrate with , which allows Immuta to authenticate with Databricks using a client secret. Once Databricks verifies the Immuta service principal’s identity using the client secret, Immuta is granted a temporary OAuth token to perform token-based authentication in subsequent requests. When that token expires (after one hour), Immuta requests a new temporary token. See the for more details.

The Unity Catalog data object model introduces a 3-tiered namespace, as . Consequently, your Databricks tables registered as data sources in Immuta will reference the catalog, schema (also called a database), and table.

External data connectors and query-federated tables are preview features in Databricks. See the for details about the support and limitations of these features before registering them as data sources in the Unity Catalog integration.

The Databricks Unity Catalog integration audits all user queries run in the integration's clusters or SQL warehouses. See the for details about the contents of the logs.

The audit ingest is set when and can be scoped to only ingest specific workspaces if needed. The default ingest frequency is every hour, but this can be configured to a different frequency on the . Additionally, audit ingestion can be manually requested at any time from the Immuta audit page. When manually requested, it will only search for new queries that were created since the last query that had been audited. The job is run in the background, so the new queries will not be immediately available.

for a list of requirements.

/

The feature or integration is enabled.

The feature or integration is disabled.

Immuta projects (Enable the to allow you to apply purpose-based policies to Databricks data sources in a project.)

.

✅
⛔
REVOKE
GRANT
Subscription policies
Databricks metastore magic
Databricks Spark integration
Client Credentials Flow
Databricks OAuth machine-to-machine authentication
Databricks OAuth machine-to-machine (M2M) authentication page
Databricks documentation
Databricks Unity Catalog audit page
Configure the Databricks Unity Catalog integration
Databricks Unity Catalog documentation
Data policies
managing and accessing data across multiple Databricks workspaces
enforcing Unity Catalog row-, column-, and table-level access controls on Databricks clusters and SQL warehouses
auditing activity of both Immuta users and non-Immuta users
limitations section
outlined above
project-scoped purpose exceptions feature
✅
✅
⛔
✅
⛔
✅
⛔
⛔
✅
✅
✅
Databricks OAuth for service principals
configuring the integration
Immuta app settings page
Select masking policies
Row-level policies
purpose-based policies
permissions requirements section
permissions
See the Enable Unity Catalog guide