LogoLogo
2025.1Book a demo
  • Immuta Documentation - 2025.1
  • Configuration
    • Deploy Immuta
      • Requirements
      • Install
        • Managed Public Cloud
        • Red Hat OpenShift
      • Upgrade
        • Migrating to the New Helm Chart
        • Upgrading IEHC
      • Guides
        • Ingress Configuration
        • TLS Configuration
        • Cosign Verification
        • Production Best Practices
        • Rotating Credentials
        • External Cache Configuration
        • Enabling Legacy Query Engine
        • Private Container Registries
        • Air-Gapped Environments
      • Disaster Recovery
      • Troubleshooting
      • Conventions
    • Connect Data Platforms
      • Data Platforms Overview
      • Amazon S3
      • AWS Lake Formation
        • Register an AWS Lake Formation Connection
        • AWS Lake Formation Reference Guide
      • Azure Synapse Analytics
        • Getting Started with Azure Synapse Analytics
        • Configure Azure Synapse Analytics Integration
        • Reference Guides
          • Azure Synapse Analytics Integration
          • Azure Synapse Analytics Pre-Configuration Details
      • Databricks
        • Databricks Spark
          • Getting Started with Databricks Spark
          • How-to Guides
            • Configure a Databricks Spark Integration
            • Manually Update Your Databricks Cluster
            • Install a Trusted Library
            • Project UDFs Cache Settings
            • Run R and Scala spark-submit Jobs on Databricks
            • DBFS Access
            • Troubleshooting
          • Reference Guides
            • Databricks Spark Integration Configuration
              • Installation and Compliance
              • Customizing the Integration
              • Setting Up Users
              • Spark Environment Variables
              • Ephemeral Overrides
            • Security and Compliance
            • Registering and Protecting Data
            • Accessing Data
              • Delta Lake API
        • Databricks Unity Catalog
          • Getting Started with Databricks Unity Catalog
          • How-to Guides
            • Register a Databricks Unity Catalog Connection
            • Configure a Databricks Unity Catalog Integration
            • Migrate to Unity Catalog
          • Databricks Unity Catalog Integration Reference Guide
      • Google BigQuery
      • Redshift
        • Getting Started with Redshift
        • How-to Guides
          • Configure Redshift Integration
          • Configure Redshift Spectrum
        • Reference Guides
          • Redshift Integration
          • Redshift Pre-Configuration Details
      • Snowflake
        • Getting Started with Snowflake
        • How-to Guides
          • Register a Snowflake Connection
          • Configure a Snowflake Integration
          • Snowflake Table Grants Migration
          • Edit or Remove Your Snowflake Integration
          • Integration Settings
            • Enable Snowflake Table Grants
            • Use Snowflake Data Sharing with Immuta
            • Configure Snowflake Lineage Tag Propagation
            • Enable Snowflake Low Row Access Policy Mode
              • Upgrade Snowflake Low Row Access Policy Mode
        • Reference Guides
          • Snowflake Integration
          • Snowflake Data Sharing
          • Snowflake Lineage Tag Propagation
          • Snowflake Low Row Access Policy Mode
          • Snowflake Table Grants
          • Warehouse Sizing Recommendations
        • Explanatory Guides
          • Phased Snowflake Onboarding
      • Starburst (Trino)
        • Getting Started with Starburst (Trino)
        • How-to Guides
          • Configure Starburst (Trino) Integration
          • Customize Read and Write Access Policies for Starburst (Trino)
        • Starburst (Trino) Integration Reference Guide
      • Queries Immuta Runs in Remote Platforms
      • Legacy Integrations
        • Securing Hive and Impala Without Sentry
        • Enabling ImmutaGroupsMapping
      • Connect Your Data
        • Connections
          • How-to Guides
            • Run Object Sync
            • Manage Connection Settings
            • Use the Connection Upgrade Manager
              • Troubleshooting
          • Reference Guides
            • Connections Reference Guide
            • Upgrading to Connections
              • Before You Begin
              • API Changes
              • FAQ
        • Data Sources
          • Data Sources in Immuta
          • Register Data Sources
            • Amazon S3 Data Source
            • Azure Synapse Analytics Data Source
            • Databricks Data Source
            • Google BigQuery Data Source
            • Redshift Data Source
            • Snowflake Data Source
              • Bulk Create Snowflake Data Sources
            • Starburst (Trino) Data Source
          • Data Source Settings
            • How-to Guides
              • Manage Data Sources and Data Source Settings
              • Manage Data Source Members
              • Manage Access Requests and Tasks
              • Manage Data Dictionary Descriptions
              • Disable Immuta from Sampling Raw Data
            • Data Source Health Checks Reference Guide
          • Schema Monitoring
            • How-to Guides
              • Run Schema Monitoring and Column Detection Jobs
              • Manage Schema Monitoring
            • Reference Guides
              • Schema Monitoring
              • Schema Projects
            • Why Use Schema Monitoring?
    • Manage Data Metadata
      • Connect External Catalogs
        • Getting Started with External Catalogs
        • Configure an External Catalog
        • Reference Guides
          • External Catalogs
          • Custom REST Catalogs
            • Custom REST Catalog Interface Endpoints
      • Data Identification
        • Introduction
        • Getting Started with Data Identification
        • How-to Guides
          • Use Identification
          • Manage Identifiers
          • Run and Manage Identification
          • Manage Identification Frameworks
          • Use Sensitive Data Discovery (SDD)
        • Reference Guides
          • How Competitive Criteria Analysis Works
          • Built-in Identifier Reference
            • Built-In Identifier Changelog
          • Built-in Discovered Tags Reference
      • Data Classification
        • How-to Guides
          • Activate Classification Frameworks
          • Adjust Identification and Classification Framework Tags
          • How to Use a Built-In Classification Framework with Your Own Tags
        • Classification Frameworks Reference Guide
      • Manage Tags
        • How-to Guides
          • Create and Manage Tags
          • Add Tags to Data Sources and Projects
        • Tags Reference Guide
    • Manage Users
      • Getting Started with Users
      • Identity Managers (IAMs)
        • How-to Guides
          • Okta LDAP Interface
          • OpenID Connect
            • OpenID Connect Protocol
            • Okta and OpenID Connect
            • OneLogin with OpenID Connect
          • SAML
            • SAML Protocol
            • Microsoft Entra ID
            • Okta SAML SCIM
        • Reference Guides
          • Identity Managers
          • SAML Single Logout
          • SAML Protocol Configuration Options
      • Immuta Users
        • How-to Guides
          • Managing Personas and Permissions
          • Manage Attributes and Groups
          • User Impersonation
          • External User ID Mapping
          • External User Info Endpoint
        • Reference Guides
          • Attributes and Groups in Immuta
          • Permissions and Personas
    • Organize Data into Domains
      • Getting Started with Domains
      • Domains Reference Guide
    • Application Settings
      • How-to Guides
        • App Settings
        • BI Tools
          • BI Tool Configuration Recommendations
          • Power BI Configuration Example
          • Tableau Configuration Example
        • Add a License Key
        • Add ODBC Drivers
        • Manage Encryption Keys
        • System Status Bundle
      • Reference Guides
        • Data Processing, Encryption, and Masking Practices
        • Metadata Ingestion
  • Governance
    • Introduction
      • Automate Data Access Control Decisions
        • The Two Paths: Orchestrated RBAC and ABAC
        • Managing User Metadata
        • Managing Data Metadata
        • Author Policy
        • Test and Deploy Policy
      • Compliantly Open More Sensitive Data for ML and Analytics
        • Managing User Metadata
        • Managing Data Metadata
        • Author Policy
    • Author Policies for Data Access Control
      • Introduction
        • Scalability and Evolvability
        • Understandability
        • Distributed Stewardship
        • Consistency
        • Availability of Data
      • Policies
        • Authoring Policies at Scale
        • Data Engineering with Limited Policy Downtime
        • Subscription Policies
          • How-to Guides
            • Author a Subscription Policy
            • Author an ABAC Subscription Policy
            • Subscription Policies Advanced DSL Guide
            • Author a Restricted Subscription Policy
            • Clone, Activate, or Stage a Global Policy
          • Reference Guides
            • Subscription Policies
            • Subscription Policy Access Types
            • Advanced Use of Special Functions
        • Data Policies
          • Overview
          • How-to Guides
            • Author a Masking Data Policy
            • Author a Minimization Policy
            • Author a Purpose-Based Restriction Policy
            • Author a Restricted Data Policy
            • Author a Row-Level Policy
            • Author a Time-Based Restriction Policy
            • Policy Certifications and Diffs
          • Reference Guides
            • Data Policy Types
            • Masking Policies
            • Row-Level Policies
            • Custom WHERE Clause Functions
            • Data Policy Conflicts and Fallback
            • Custom Data Policy Certifications
            • Orchestrated Masking Policies
      • Projects and Purpose-Based Access Control
        • Projects and Purpose Controls
          • Getting Started
          • How-to Guides
            • Create a Project
            • Create and Manage Purposes
            • Project Management
              • Manage Projects and Project Settings
              • Manage Project Data Sources
              • Manage Project Members
          • Reference Guides
            • Projects and Purposes
          • Why Use Purposes?
        • Equalized Access
          • Manage Project Equalization
          • Project Equalization Reference Guide
          • Why Use Project Equalization?
        • Masked Joins
          • Enable Masked Joins
          • Why Use Masked Joins?
        • Writing to Projects
          • How-to Guides
            • Create and Manage Snowflake Project Workspaces
            • Create and Manage Databricks Spark Project Workspaces
            • Write Data to the Workspace
          • Reference Guides
            • Project Workspaces
            • Project UDFs (Databricks)
    • Observe Access and Activity
      • Introduction
      • Audit
        • How-to Guides
          • Export Audit Logs to S3
          • Export Audit Logs to ADLS
          • Run Governance Reports
        • Reference Guides
          • Universal Audit Model (UAM)
            • UAM Schema
          • Query Audit Logs
            • Snowflake Query Audit Logs
            • Databricks Unity Catalog Query Audit Logs
            • Databricks Spark Query Audit Logs
            • Starburst (Trino) Query Audit Logs
          • Audit Export GraphQL Reference Guide
          • Governance Report Types
          • Unknown Users in Audit Logs
      • Dashboards
        • Use the Audit Dashboards How-To Guide
        • Audit Dashboards Reference Guide
      • Monitors
        • Manage Monitors and Observations
        • Monitors Reference Guide
    • Access Data
      • Subscribe to a Data Source
      • Query Data
        • Querying Snowflake Data
        • Querying Databricks Data
        • Querying Databricks SQL Data
        • Querying Starburst (Trino) Data
        • Querying Redshift Data
        • Querying Azure Synapse Analytics Data
        • Connect to a Database Tool to Run Ad Hoc Queries
      • Subscribe to Projects
  • Releases
    • Release Notes
      • Immuta v2025.1 Release Notes
        • User Interface Changes in v2025.1 LTS
      • Immuta LTS Changelog
      • Immuta Image Digests
      • Immuta CLI Release Notes
    • Immuta Release Lifecycle
    • Immuta Support Matrix Overview
    • Preview Features
      • Features in Preview
    • Deprecations and EOL
  • Developer Guides
    • The Immuta CLI
      • Install and Configure the Immuta CLI
      • Manage Your Immuta Tenant
      • Manage Data Sources
      • Manage Sensitive Data Discovery
        • Manage Sensitive Data Discovery Rules
        • Manage Identification Frameworks
        • Run Sensitive Data Discovery on Data Sources
      • Manage Policies
      • Manage Projects
      • Manage Purposes
      • Manage Audit
    • The Immuta API
      • Integrations API
        • Getting Started
        • How-to Guides
          • Configure an Amazon S3 Integration
          • Configure an Azure Synapse Analytics Integration
          • Configure a Databricks Unity Catalog Integration
          • Configure a Google BigQuery Integration
          • Configure a Redshift Integration
          • Configure a Snowflake Integration
          • Configure a Starburst (Trino) Integration
        • Reference Guides
          • Integrations API Endpoints
          • Integration Configuration Payload
          • Response Schema
          • HTTP Status Codes and Error Messages
      • Connections API
        • How-to Guides
          • Register a Connection
            • Register a Snowflake Connection
            • Register a Databricks Unity Catalog Connection
            • Register an AWS Lake Formation Connection
          • Manage a Connection
          • Deregister a Connection
        • Connection Registration Payloads Reference Guide
      • Immuta V2 API
        • Data Source Payload Attribute Details
        • Data Source Request Payload Examples
        • Create Policies API Examples
        • Create Projects API Examples
        • Create Purposes API Examples
      • Immuta V1 API
        • Authenticate with the API
        • Configure Your Instance of Immuta
          • Get Job Status
          • Manage Frameworks
          • Manage IAMs
          • Manage Licenses
          • Manage Notifications
          • Manage Tags
          • Manage Webhooks
          • Search Filters
          • Manage Identification
            • Identification Frameworks to Identifiers in Domains
            • Manage Sensitive Data Discovery (SDD)
        • Connect Your Data
          • Create and Manage an Amazon S3 Data Source
          • Create an Azure Synapse Analytics Data Source
          • Create an Azure Blob Storage Data Source
          • Create a Databricks Data Source
          • Create a Presto Data Source
          • Create a Redshift Data Source
          • Create a Snowflake Data Source
          • Create a Starburst (Trino) Data Source
          • Manage the Data Dictionary
        • Use Domains
        • Manage Data Access
          • Manage Access Requests
          • Manage Data and Subscription Policies
          • Manage Write Policies
            • Write Policies Payloads and Response Schema Reference Guide
          • Policy Handler Objects
          • Search Connection Strings
          • Search for Organizations
          • Search Schemas
        • Subscribe to and Manage Data Sources
        • Manage Projects and Purposes
          • Manage Projects
          • Manage Purposes
        • Generate Governance Reports
Powered by GitBook

Other versions

  • SaaS
  • 2025.1
  • 2024.3
  • 2024.2

Copyright © 2014-2024 Immuta Inc. All rights reserved.

On this page
  • What is the difference between entity tags and classification tags?
  • Why isn’t entity tagging sufficient for classification?
  • What is a framework?
  • What are the benefits of classification?

Was this helpful?

Export as PDF
  1. Configuration
  2. Manage Data Metadata
  3. Data Classification

Classification Frameworks Reference Guide

Last updated 1 month ago

Was this helpful?

Classification is the process in which data is categorized by the content and the associated risk level based on context. To classify your data, Discover evaluates your data in two phases:

  1. Sensitive data discovery (SDD) runs to identify your data by content type. The data is discovered and evaluated by the identifier it matches and is tagged.

  2. Classification runs to classify your data by its context. The data is classified by the rules within a framework and the tags currently applied to the column and table. Once the data is classified, it's tagged with special tags with additional metadata used in the as sensitivity and visualize when that sensitive data is accessed.

Both phases of classification in Immuta can be customized to find and tag the data your organization cares about. After data is classified, classification tags can be used to or .

Using Discover classification to assign risk and sensitivity levels to your data and audit dashboards to visualize the risk levels offers these benefits:

  • Increasing the semantic understanding of your data to better meet compliance requirements

  • Reducing the time to make decisions about what data access is allowed under what purposes

  • Reducing the effort and time to respond to auditors about data access in your company

  • Reducing the labor of classifying data to enumerate what data is within the scope of security or regulatory compliance frameworks

What is the difference between entity tags and classification tags?

Both entity and classification tags describe the content of data on a per-column basis, and you can use them to and . However, there are key differences between the two:

  • Entity tags are applied through identification and describe what the data is. SDD applies entity tags to columns based on the patterns of the data.

  • Classification tags are applied through categorization and risk assessment and describe the context of the data and the risk it poses. Using classification frameworks, classification tags are applied to columns based on the entity tags previously applied by SDD. Additional classification tags can then be applied, providing even more context or expressing the property of the record rather than just the column.

Why isn’t entity tagging sufficient for classification?

Entity tags describe the contents of individual columns, in isolation. But you don't access individual columns in isolation, so why would you determine their sensitivity that way? Entity tags do not attempt to and cannot contextualize column contents with neighboring columns' contents. This means that connections between data are lost if they cannot be identified through a pattern within the column itself. Classification tags describe the contents of a table with the context of all its columns, providing a holistic view of the risk of the data for what it is, rather than the pattern it fits. Context is necessary to understand whether your data is public or private data, risky or safe to have ungoverned access, or sensitive and creating toxic joins when accessed with other tables.

For example, under HIPAA, a list of procedures a doctor performed is only considered protected health information (PHI) if it can be associated with the identity of patients. Since entity tagging operates on a single column-by-column basis, it cannot reason whether or not a column containing procedure codes merits classification as PHI. Therefore, entity tagging will not tag procedure codes as PHI. But classification tagging will tag it PHI if it detects patient identity information in the other columns of the table.

Additionally, entity tagging does not indicate how sensitive the data is, but classification tags can carry a sensitivity level. For example, an entity tag may identify a column that contains telephone numbers, but the entity tag alone cannot say that the column is sensitive. A phone number associated with a person may be classified as sensitive, while the publicly listed phone number of a company might not be considered sensitive.

After you understand what entities your data contains using SDD, you need to adopt frameworks that determine what combinations of data constitute sensitive data and their level of sensitivity.

What is a framework?

Frameworks are a set of data categories and a set of classification rules to place data into those categories. In Immuta, the data categories are represented by tags, and when data fits a classification rule the tag is applied:

  • Classification rules determine how each classification tag is applied. These rules can apply tags based on tags already on the column, tags applied to neighboring columns, and tags applied to the data source. This means that the complete data source is considered when classifying your data sources, and even tags applied to individual columns can affect the risk level of the entire data source.

Frameworks are often built off of an interpretation of regulatory frameworks or standards, such as the US Health Insurance Portability and Accountability Act (HIPAA) and the PCI standard. However, organizations can also build frameworks that represent their internal business processes. When used in Immuta, they automate data tagging and provide information about what data you have immediately after it is registered in Immuta.

What are the benefits of classification?

Data classification is a process, and with Immuta, much of it is automated. This means that you can reap the benefits of classified and tagged data quicker and easier than manually classifying and tagging it:

  • Build data platform compliance: Create classification frameworks to identify and classify your data based on the industry practices and regulations your organization needs to abide by. Once the frameworks are built, they will automatically tag data as it's registered, ensuring your data sources are properly tagged to abide by the regulations you care about.

Classification tags are applied based on the Discovered tags from SDD or other tags on the data source. Classification tags contain additional metadata about each column, such as the source of the tag, the dimension, and the sensitivity level. This metadata is used in the framework rules and complex formulas that assign the sensitivity of queries visible in .

Quick data access control: Use classification to identify and classify your data immediately after registration in Immuta. Then, off of those tags. This repeatable process will protect your data in its current state and whenever any new data sources are created. Automate the process further with ; schema monitoring allows you to register data just once. Then, Immuta will monitor your data environment for changes and, when found, update the data source in Immuta, update the tags on that data source, and then update user access based on your governance policies when changes happen.

Scale your data monitoring: Use classification to identify and classify your data immediately after registration in Immuta. Then, view your data users' access to your sensitive and risky data through the .

audit dashboards
build policies
visualize sensitive data access in audit dashboards
monitor data access
build access policies
audit dashboards
build governance policies
schema monitoring
audit dashboards