LogoLogo
2024.3
  • Immuta Documentation - 2024.3
  • What is Immuta?
  • Self-Managed Deployment
    • Requirements
    • Install
      • Managed Public Cloud
      • Red Hat OpenShift
    • Upgrade
      • Migrating to the New Helm Chart
      • Upgrading (IEHC)
      • Upgrading (IHC)
    • Guides
      • Ingress Configuration
      • TLS Configuration
      • Cosign Verification
      • Production Best Practices
      • Rotating Credentials
      • External Cache Configuration
      • Enabling Legacy Query Engine and Fingerprint
      • Private Container Registries
      • Air-Gapped Environments
    • Disaster Recovery
    • Troubleshooting
    • Conventions
  • Integrations
    • Immuta Integrations
    • Snowflake
      • Getting Started
      • How-to Guides
        • Configure a Snowflake Integration
        • Snowflake Table Grants Migration
        • Edit or Remove Your Snowflake Integration
        • Integration Settings
          • Enable Snowflake Table Grants
          • Use Snowflake Data Sharing with Immuta
          • Configure Snowflake Lineage Tag Propagation
          • Enable Snowflake Low Row Access Policy Mode
            • Upgrade Snowflake Low Row Access Policy Mode
      • Reference Guides
        • Snowflake Integration
        • Snowflake Data Sharing
        • Snowflake Lineage Tag Propagation
        • Snowflake Low Row Access Policy Mode
        • Snowflake Table Grants
        • Warehouse Sizing Recommendations
      • Phased Snowflake Onboarding Concept Guide
    • Databricks Unity Catalog
      • Getting Started
      • How-to Guides
        • Configure a Databricks Unity Catalog Integration
        • Migrate to Unity Catalog
      • Databricks Unity Catalog Integration Reference Guide
    • Databricks Spark
      • How-to Guides
        • Configuration
          • Simplified Databricks Spark Configuration
          • Manual Databricks Spark Configuration
          • Manually Update Your Databricks Cluster
          • Install a Trusted Library
        • DBFS Access
        • Limited Enforcement in Databricks Spark
        • Hide the Immuta Database in Databricks
        • Run spark-submit Jobs on Databricks
        • Configure Project UDFs Cache Settings
        • External Metastores
      • Reference Guides
        • Databricks Spark Integration
        • Databricks Spark Pre-Configuration Details
        • Configuration Settings
          • Databricks Spark Cluster Policies
            • Python & SQL
            • Python & SQL & R
            • Python & SQL & R with Library Support
            • Scala
            • Sparklyr
          • Environment Variables
          • Ephemeral Overrides
          • Py4j Security Error
          • Scala Cluster Security Details
          • Databricks Security Configuration for Performance
        • Databricks Change Data Feed
        • Databricks Libraries Introduction
        • Delta Lake API
        • Spark Direct File Reads
        • Databricks Metastore Magic
    • Starburst (Trino)
      • Getting Started
      • How-to Guides
        • Configure Starburst (Trino) Integration
        • Customize Read and Write Access Policies for Starburst (Trino)
      • Starburst (Trino) Integration Reference Guide
    • Redshift
      • Getting Started
      • How-to Guides
        • Configure Redshift Integration
        • Configure Redshift Spectrum
      • Reference Guides
        • Redshift Integration
        • Redshift Pre-Configuration Details
    • Azure Synapse Analytics
      • Getting Started
      • Configure Azure Synapse Analytics Integration
      • Reference Guides
        • Azure Synapse Analytics Integration
        • Azure Synapse Analytics Pre-Configuration Details
    • Amazon S3
    • Google BigQuery
    • Legacy Integrations
      • Securing Hive and Impala Without Sentry
      • Enabling ImmutaGroupsMapping
    • Catalogs
      • Getting Started with External Catalogs
      • Configure an External Catalog
      • Reference Guides
        • External Catalogs
        • Custom REST Catalogs
          • Custom REST Catalog Interface Endpoints
  • Data
    • Registering Metadata
      • Data Sources in Immuta
      • Register Data Sources
        • Create a Data Source
        • Create an Amazon S3 Data Source
        • Create a Google BigQuery Data Source
        • Bulk Create Snowflake Data Sources
      • Data Source Settings
        • How-to Guides
          • Manage Data Sources and Data Source Settings
          • Manage Data Source Members
          • Manage Access Requests and Tasks
          • Manage Data Dictionary Descriptions
          • Disable Immuta from Sampling Raw Data
        • Data Source Health Checks Reference Guide
      • Schema Monitoring
        • How-to Guides
          • Run Schema Monitoring and Column Detection Jobs
          • Manage Schema Monitoring
        • Reference Guides
          • Schema Monitoring
          • Schema Projects
        • Why Use Schema Monitoring?
    • Domains
      • Getting Started with Domains
      • Domains Reference Guide
    • Tags
      • How-to Guides
        • Create and Manage Tags
        • Add Tags to Data Sources and Projects
      • Tags Reference Guide
  • People
    • Getting Started
    • Identity Managers (IAMs)
      • How-to Guides
        • Okta LDAP Interface
        • OpenID Connect
          • OpenID Connect Protocol
          • Okta and OpenID Connect
          • OneLogin with OpenID
        • SAML
          • SAML Protocol
          • Microsoft Entra ID
          • Okta SAML SCIM
      • Reference Guides
        • Identity Managers
        • SAML Single Logout
        • SAML Protocol Configuration Options
    • Immuta Users
      • How-to Guides
        • Managing Personas and Permissions
        • Manage Attributes and Groups
        • User Impersonation
        • External User ID Mapping
        • External User Info Endpoint
      • Reference Guides
        • Attributes and Groups in Immuta
        • Permissions and Personas
  • Discover Your Data
    • Getting Started with Discover
    • Introduction
    • Data Discovery
      • How-to Guides
        • Enable Sensitive Data Discovery (SDD)
        • Manage Identification Frameworks
        • Manage Identifiers
        • Run and Manage SDD on Data Sources
        • Manage Sensitive Data Discovery Settings
        • Migrate From Legacy to Native SDD
      • Reference Guides
        • How Competitive Criteria Analysis Works
        • Built-in Identifier Reference
        • Built-in Discovered Tags Reference
    • Data Classification
      • How-to Guides
        • Activate Classification Frameworks
        • Adjust Identification and Classification Framework Tags
        • How to Use a Built-In Classification Framework with Your Own Tags
      • Built-in Classification Frameworks Reference Guide
  • Detect Your Activity
    • Getting Started with Detect
      • Monitor and Secure Sensitive Data Platform Query Activity
        • User Identity Best Practices
        • Integration Architecture
        • Snowflake Roles Best Practices
        • Register Data Sources
        • Automate Entity and Sensitivity Discovery
        • Detect with Discover: Onboarding Guide
        • Using Immuta Detect
      • General Immuta Configuration
        • User Identity Best Practices
        • Integration Architecture
        • Databricks Roles Best Practices
        • Register Data Sources
    • Introduction
    • Audit
      • How-to Guides
        • Export Audit Logs to S3
        • Export Audit Logs to ADLS
        • Run Governance Reports
      • Reference Guides
        • Universal Audit Model (UAM)
          • UAM Schema
        • Query Audit Logs
          • Snowflake Query Audit Logs
          • Databricks Unity Catalog Query Audit Logs
          • Databricks Spark Query Audit Logs
          • Starburst (Trino) Query Audit Logs
        • Audit Export GraphQL Reference Guide
        • Governance Report Types
        • Unknown Users in Audit Logs
      • Deprecated Audit Guides
        • Legacy to UAM Migration
        • Download Audit Logs
        • System Audit Logs
    • Dashboards
      • Use the Detect Dashboards How-To Guide
      • Detect Dashboards Reference Guide
    • Monitors
      • Manage Monitors and Observations
      • Detect Monitors Reference Guide
  • Secure Your Data
    • Getting Started with Secure
      • Automate Data Access Control Decisions
        • The Two Paths: Orchestrated RBAC and ABAC
        • Managing User Metadata
        • Managing Data Metadata
        • Author Policy
        • Test and Deploy Policy
      • Compliantly Open More Sensitive Data for ML and Analytics
        • Managing User Metadata
        • Managing Data Metadata
        • Author Policy
      • Federated Governance for Data Mesh and Self-Serve Data Access
        • Defining Domains
        • Managing Data Products
        • Managing Data Metadata
        • Apply Federated Governance
        • Discover and Subscribe to Data Products
    • Introduction
      • Scalability and Evolvability
      • Understandability
      • Distributed Stewardship
      • Consistency
      • Availability of Data
    • Authoring Policies in Secure
      • Authoring Policies at Scale
      • Data Engineering with Limited Policy Downtime
      • Subscription Policies
        • How-to Guides
          • Author a Subscription Policy
          • Author an ABAC Subscription Policy
          • Subscription Policies Advanced DSL Guide
          • Author a Restricted Subscription Policy
          • Clone, Activate, or Stage a Global Policy
        • Reference Guides
          • Subscription Policies
          • Subscription Policy Access Types
          • Advanced Use of Special Functions
      • Data Policies
        • Overview
        • How-to Guides
          • Author a Masking Data Policy
          • Author a Minimization Policy
          • Author a Purpose-Based Restriction Policy
          • Author a Restricted Data Policy
          • Author a Row-Level Policy
          • Author a Time-Based Restriction Policy
          • Certifications Exemptions and Diffs
          • External Masking Interface
        • Reference Guides
          • Data Policy Types
          • Masking Policies
          • Row-Level Policies
          • Custom WHERE Clause Functions
          • Data Policy Conflicts and Fallback
          • Custom Data Policy Certifications
          • Orchestrated Masking Policies
    • Projects and Purpose-Based Access Control
      • Projects and Purpose Controls
        • Getting Started
        • How-to Guides
          • Create a Project
          • Create and Manage Purposes
          • Adjust a Policy
          • Project Management
            • Manage Projects and Project Settings
            • Manage Project Data Sources
            • Manage Project Members
        • Reference Guides
          • Projects and Purposes
          • Policy Adjustments
        • Why Use Purposes?
      • Equalized Access
        • Manage Project Equalization
        • Project Equalization Reference Guide
        • Why Use Project Equalization?
      • Masked Joins
        • Enable Masked Joins
        • Why Use Masked Joins?
      • Writing to Projects
        • How-to Guides
          • Create and Manage Snowflake Project Workspaces
          • Create and Manage Databricks Spark Project Workspaces
          • Write Data to the Workspace
        • Reference Guides
          • Project Workspaces
          • Project UDFs (Databricks)
    • Data Consumers
      • Subscribe to a Data Source
      • Query Data
        • Querying Snowflake Data
        • Querying Databricks Data
        • Querying Databricks SQL Data
        • Querying Starburst (Trino) Data
        • Querying Redshift Data
        • Querying Azure Synapse Analytics Data
      • Subscribe to Projects
  • Application Settings
    • How-to Guides
      • App Settings
      • BI Tools
        • BI Tool Configuration Recommendations
        • Power BI Configuration Example
        • Tableau Configuration Example
      • Add a License Key
      • Add ODBC Drivers
      • Manage Encryption Keys
      • System Status Bundle
    • Reference Guides
      • Data Processing, Encryption, and Masking Practices
      • Metadata Ingestion
  • Releases
    • Immuta v2024.3 Release Notes
    • Immuta Release Lifecycle
    • Immuta LTS Changelog
    • Immuta Support Matrix Overview
    • Immuta CLI Release Notes
    • Immuta Image Digests
    • Preview Features
      • Features in Preview
    • Deprecations
  • Developer Guides
    • The Immuta CLI
      • Install and Configure the Immuta CLI
      • Manage Your Immuta Tenant
      • Manage Data Sources
      • Manage Sensitive Data Discovery
        • Manage Sensitive Data Discovery Rules
        • Manage Identification Frameworks
        • Run Sensitive Data Discovery on Data Sources
      • Manage Policies
      • Manage Projects
      • Manage Purposes
      • Manage Audit
    • The Immuta API
      • Integrations API
        • Getting Started
        • How-to Guides
          • Configure an Amazon S3 Integration
          • Configure an Azure Synapse Analytics Integration
          • Configure a Databricks Unity Catalog Integration
          • Configure a Google BigQuery Integration
          • Configure a Redshift Integration
          • Configure a Snowflake Integration
          • Configure a Starburst (Trino) Integration
        • Reference Guides
          • Integrations API Endpoints
          • Integration Configuration Payload
          • Response Schema
          • HTTP Status Codes and Error Messages
      • Immuta V2 API
        • Data Source Payload Attribute Details
        • Data Source Request Payload Examples
        • Create Policies API Examples
        • Create Projects API Examples
        • Create Purposes API Examples
      • Immuta V1 API
        • Authenticate with the API
        • Configure Your Instance of Immuta
          • Get Fingerprint Status
          • Get Job Status
          • Manage Frameworks
          • Manage IAMs
          • Manage Licenses
          • Manage Notifications
          • Manage Sensitive Data Discovery (SDD)
          • Manage Tags
          • Manage Webhooks
          • Search Filters
        • Connect Your Data
          • Create and Manage an Amazon S3 Data Source
          • Create an Azure Synapse Analytics Data Source
          • Create an Azure Blob Storage Data Source
          • Create a Databricks Data Source
          • Create a Presto Data Source
          • Create a Redshift Data Source
          • Create a Snowflake Data Source
          • Create a Starburst (Trino) Data Source
          • Manage the Data Dictionary
        • Manage Data Access
          • Manage Access Requests
          • Manage Data and Subscription Policies
          • Manage Domains
          • Manage Write Policies
            • Write Policies Payloads and Response Schema Reference Guide
          • Policy Handler Objects
          • Search Audit Logs
          • Search Connection Strings
          • Search for Organizations
          • Search Schemas
        • Subscribe to and Manage Data Sources
        • Manage Projects and Purposes
          • Manage Projects
          • Manage Purposes
        • Generate Governance Reports
Powered by GitBook

Other versions

  • SaaS
  • 2024.3
  • 2024.2

Copyright © 2014-2024 Immuta Inc. All rights reserved.

On this page
  • Use a single Immuta for testing policies
  • Best practice for policy testing
  • Logically separating your data platform
  • Logically separating Immuta
  • Ensuring development data is tagged correctly
  • Testing a new policy
  • Testing an edit to an existing policy
  • Policy approvals

Was this helpful?

Export as PDF
  1. Secure Your Data
  2. Getting Started with Secure
  3. Automate Data Access Control Decisions

Test and Deploy Policy

Last updated 7 months ago

Was this helpful?

Now that you have a sense of what policies you want to enforce, it is sometimes necessary to first test those policies before deploying them. This is important if you have existing users accessing the tables you are protecting and you want to understand the impact to those users before moving a policy to production. However, consider this step optional.

It's also important to remember that Immuta subscription policies are additive, meaning no existing SELECT grants on tables will be revoked by Immuta when a subscription policy is created. It is your responsibility to revoke all pre-Immuta SELECT grants once you are happy with Immuta's controls.

Use a single Immuta for testing policies

While it may seem wise to have a separate Immuta tenant for development and production mapped to separate development and production data platforms, that is not necessary nor recommended because there are too many variables to account for and keep up-to-date in your data platform and identity management system:

  1. Many Immuta data policies are enforced with a heavy reliance on the actual data values. Take for example the following row-level policy: only show rows where user possesses an attribute in Work Location that matches the value in the column tagged Discovered.Entity.Location. This policy compares the user’s office location to the data in the column tagged Location, so if you were to test this policy against a development table with incorrect values, it is an invalid test that could lead to false positives or false negatives.

  2. Similar to #1, if you are not using your real production users, just like having invalid data can get you an invalid test result, so could having invalid or mock user attributes or groups.

  3. Policies can (and should) target tables using tags discovered by or (such as Alation or Collibra). For SDD, that means if using development data, the data needs to match the production data so it is discovered and tagged correctly. For external catalogs, that would mean you need your external catalog to have everything in development tagged exactly like it is in production.

  4. Users can have attributes and groups from , so similar to #3, you would need to have that all synchronized correctly against your development user set as it is synchronized for your production user set.

  5. Your development user set may also lack all relevant permutations of access that need to be tested (sets of attributes/groups relevant to the policy logic). These permutations are not knowable a priori because they are dependent on the policy logic. So you would have to create all permutations (or validate existing ones) every time you create a new policy.

  6. Lastly, you have a development data environment to test data changes before moving to production. That means your development data environment needs the production policies in place. In other words, policies are part of what needs to be replicated consistently across development environments.

Be aware, this is not to suggest that you don’t need a development data platform environment; that could certainly be necessary for your transformation jobs/testing (which should include policy, per #6). However, for policy testing it is a bad approach to use non-prod data and non-prod users because of the complexity of replicating everything perfectly in development - by the time you’ve done all that, it matches what’s in production exactly.

Best practice for policy testing

Immuta recommends testing against clones of production data, in a separate database, using your production data platform and production user identities with a single Immuta tenant. If you believe you do have a perfectly matching development environment that covers 1-5 in the section above, you can use it (and should for #6), but we still recommend a single Immuta tenant because Immuta allows logical separation of development and production policy work without requiring physically separated Immuta tenants.

Logically separating your data platform

So how do you test policies without impacting production workloads if we are testing against production? You create a logical separation of development and production in your data platform. What this means is that rather than physically separating your data into completely separate accounts or workspaces (or whatever term your data warehouse may use), logically separate development from production using the mechanisms provided by the data platform - such as databases. This reduces the amount of replication management burden you need to undertake significantly, but does put more pressure on ensuring your policy controls are accurate - which is why you have Immuta!

Many of our customers already take this approach for development and testing in their data platform. Instead of having physically separate accounts or workspaces of their data platform, they create logical separation using databases and table/view clones within the same data platform instance. If you are already doing this, you can skip the rest of this section.

Follow the below recommendations on how to create logical separation of development data in your data platform using the following approaches:

  • Redshift: Create new views that are backed by the tables in question to a different development database and register them with Immuta. Since Immuta enforces policies in Redshift using views, creating new views will not be impacted by any existing policy on the tables that back the views.

  • Starburst (Trino): You should virtualize the tables as new tables to a different development catalog in Starburst (Trino) for testing the policy.

  • Azure Synapse Analytics: You should virtualize the tables as new tables to a different development database in Synapse for testing the policy.

If you are managing creation of tables in an automated way, it may be prudent to automatically create the clones/views as described above as part of that process. That way you don’t have to pick and choose tables to logically separate every time you need to do policy work - they are always logically separated already (and presumably discovered and registered by Immuta because they are registered for monitoring as well).

Append the database name to the names of cloned data sources: When you register the clones you’ve created with Immuta, ensure you append the database to your naming convention so you don’t hit any naming conflicts in Immuta.

Logically separating Immuta

If using a physically separate development data platform, ensure you have the Immuta data integration configured there as well.

If you are unable to leverage domains, we recommend adding an additional tag when the data is registered so it can be included when you describe where to target the policy. For example, tag the tables with policy 1 tag.

Ensuring development data is tagged correctly

If using SDD to tag data:

If using an external catalog:

If manually tagging:

Testing a new policy

Once the policy is activated (using either technique), it will only apply to the cloned development tables/views because the policy was scoped to that domain/tag, or because the user creating the policy is scoped to managing policies in that domain. At this point, you can invite users that will be impacted by the policy to test the change or your standard set of testers.

Once you have your testers set, you can give them all an attribute such as policy test: [policy in question] and use it to create a "subscription-testers" subscription policy. It should target only the tables/views in that domain per the steps described in the above paragraph in order to give them access to the development tables/views to test.

If you are testing a masking or row-level security policy, you don't need to do anything else; it's ready for your policy testers. However, if your ultimate goal is to test a subscription policy, you need to build it separately from the above "subscription-testers" subscription policy, but ensure that you select the Always Required option for "subscription-testers" subscription policy. That means when the "subscription-testers" subscription policy is merged with the real subscription policy you are testing, both policies will be considered and some of your test users may accurately be blocked from the table (which is part of the testing). For example, notice how these two policies (the "subscription-testers" and real policy being tested) were merged with an AND.

There's nothing stopping you from testing a set of changes (many subscription policies, many data policies) all together as well.

Once you’ve received feedback from your test users and are happy with the policy change, you can move on to the deployment of the policy. For example, add prod-domain, remove dev-domain, and then apply the policy. Or build the policy using a user that has manage policy in the production domain.

Testing an edit to an existing policy

The approach here is the same as above; however, before applying your new policy to the development domain, you should first locally disable the pre-existing global policy in the data source. This can be done by going into the development data source in the Immuta UI as the data owner and disabling the policy you plan to change in the policy tab of the data source. This must be done because the clone will have the pre-existing policy applied because it should have all matching tags.

Now you can create the new version of the policy in its place without any conflict.

Policy approvals

Sometimes you may have a requirement that multiple users approve a policy before it can be enabled for everyone. If you are in this situation, you may want to first consider doing this in git (or any source control tool) using our policy-as-code approach, so all approvals can happen in git.

You can skip this section if you believe you have a perfectly matching separate physical development data platform that covers 1-5 in the , or are already logically separating your dev and prod data in a single physical data platform.

Snowflake: your tables that need to be tested to a different development database. While Snowflake will copy the policies with the clone, as soon as you build an Immuta policy on top of it, those policies will take precedence and eliminate the cloned policies, which is the desired behavior.

Databricks Unity Catalog: Unity Catalog does not yet support tables with row/column policies, so if there is an existing row/column policy on the table that you intend to edit, rather than shallow cloning, you should create table as (select…limit 100) to create a real copy of the tables with a limit on the rows copied to a different development database. Make sure you create the table with a user that has full access to the data. If you are building a row security policy, it's recommended to ensure you have a strong distribution of the values in the column that drive the policy.

Databricks Spark: your tables that need to be tested to a different development database.

Since your policies reference tags, not tables, you may be in a situation where it’s unclear which tables you need to logically separate for testing any given policy. To figure this out, you can in Immuta to find which tables have the tags you plan to use in your policies using the What data sources has this tag been assigned to? report. But again, if you create logical separation by default as part of your data engineering process, this is not necessary.

Logical separation in Immuta is managed through . You would want to create a new domain for your cloned tables/views in Immuta and register them in that domain. For example policy 1 test domain. Note you must register your development database in Immuta with turned on (Create sources for all tables in this database and monitor for changes) so any new development tables/views will appear automatically and so you can assign the Domain at creation time.

does not discriminate between development and production data; the data will be tagged consistently as soon as it's registered with Immuta, which is another reason we recommend you use SDD for tagging.

In the case where you are using the out-of-the-box tag integration, the clone will carry the tags, which in turn will be reflected on the development data in Immuta.

If using a custom , we recommend enhancing your custom lookup logic to use a naming convention for the development data to ensure the tag sync from the development data is done against the production data. For example, you could strip off a dev_ prefix from the database.schema.table to sync tags from the production version in your catalog.

If using the with Collibra or Alation, we recommend also creating development tables in those catalogs and tagging them consistently.

You must ensure that you (or over the ) the newly registered development data in Immuta consistent with how it’s tagged in production

Once registered, you can build the new policy you want to test in a way that it only targets the tables in that domain. This can be done by either adding that domain as a target for the policy (or the policy tag you added as part of the registration process) if building the policy with a user with GOVERNANCE permission, or ensuring the user building the policy has only on the development domain (so their policies will be scoped to that domain).

To know which users are impacted, ensure you have enabled, and go to People → Overview → Filter: Tag and enter the tags in question to see which users are most active and have a good spread of permutation of access (e.g., some users that gain access and others that lose access). We recommend inviting users that query the tables/views in question the most to test the policy. If you are unable to use Detect, you can visit the audit screen and manually inspect which users have queries against the tables or the internal audit logs of your data platform.

sensitive data discovery (SDD)
external catalogs
many sources beyond your identity manager
Clone
shallow cloning
Shallow clone
Domains
schema monitoring
SDD
REST catalog
out-of-the-box integrations
manually tag
API
Detect
Use a single Immuta for testing policies section
Snowflake
Manage policies
build reports