LogoLogo
2024.2
  • Immuta Documentation - 2024.2
  • What is Immuta?
  • Self-Managed Deployment
    • Getting Started
    • Deployment Requirements
    • Install
      • Managed Public Cloud
      • Red Hat OpenShift
      • Generic Installation
      • Immuta in an Air-Gapped Environment
      • Deploy Immuta without Elasticsearch
    • Configure
      • Ingress Configuration
      • Cosign Verification
      • TLS Configuration
      • Immuta in Production
      • External Cache Configuration
      • Rotating Credentials
      • Enabling Legacy Query Engine and Fingerprint
    • Upgrade
      • Upgrade Immuta
      • Upgrade to Immuta 2024.2 LTS
    • Disaster Recovery
    • Troubleshooting
    • Conventions
    • Release Notes
  • Data and Integrations
    • Immuta Integrations
    • Snowflake
      • Getting Started
      • How-to Guides
        • Configure a Snowflake Integration
        • Snowflake Table Grants Migration
        • Edit or Remove Your Snowflake Integration
        • Integration Settings
          • Enable Snowflake Table Grants
          • Use Snowflake Data Sharing with Immuta
          • Configure Snowflake Lineage Tag Propagation
          • Enable Snowflake Low Row Access Policy Mode
            • Upgrade Snowflake Low Row Access Policy Mode
      • Reference Guides
        • Snowflake Integration
        • Snowflake Data Sharing
        • Snowflake Lineage Tag Propagation
        • Snowflake Low Row Access Policy Mode
        • Snowflake Table Grants
        • Warehouse Sizing Recommendations
      • Phased Snowflake Onboarding Concept Guide
    • Databricks Unity Catalog
      • Getting Started
      • How-to Guides
        • Configure a Databricks Unity Catalog Integration
        • Migrate to Unity Catalog
      • Databricks Unity Catalog Integration Reference Guide
    • Databricks Spark
      • How-to Guides
        • Configuration
          • Simplified Databricks Configuration
          • Manual Databricks Configuration
          • Manually Update Your Databricks Cluster
          • Install a Trusted Library
        • DBFS Access
        • Limited Enforcement in Databricks
        • Hide the Immuta Database in Databricks
        • Run spark-submit Jobs on Databricks
        • Configure Project UDFs Cache Settings
        • External Metastores
      • Reference Guides
        • Databricks Spark Integration
        • Databricks Spark Pre-Configuration Details
        • Configuration Settings
          • Cluster Policies
            • Python & SQL
            • Python & SQL & R
            • Python & SQL & R with Library Support
            • Scala
            • Sparklyr
          • Environment Variables
          • Ephemeral Overrides
          • Py4j Security Error
          • Scala Cluster Security Details
          • Databricks Security Configuration for Performance
        • Databricks Change Data Feed
        • Databricks Libraries Introduction
        • Delta Lake API
        • Spark Direct File Reads
        • Databricks Metastore Magic
    • Starburst (Trino)
      • Getting Started
      • How-to Guides
        • Configure Starburst (Trino) Integration
        • Customize Read and Write Access Policies for Starburst (Trino)
      • Starburst (Trino) Integration Reference Guide
    • Redshift
      • Getting Started
      • How-to Guides
        • Configure Redshift Integration
        • Configure Redshift Spectrum
      • Reference Guides
        • Redshift Integration
        • Redshift Pre-Configuration Details
    • Azure Synapse Analytics
      • Getting Started
      • Configure Azure Synapse Analytics Integration
      • Reference Guides
        • Azure Synapse Analytics Integration
        • Azure Synapse Analytics Pre-Configuration Details
    • Amazon S3
    • Google BigQuery
    • Legacy Integrations
      • Securing Hive and Impala Without Sentry
      • Enabling ImmutaGroupsMapping
    • Registering Metadata
      • Data Sources in Immuta
      • Register Data Sources
        • Create a Data Source
        • Create an Amazon S3 Data Source
        • Create a Google BigQuery Data Source
        • Bulk Create Snowflake Data Sources
      • Data Source Settings
        • How-to Guides
          • Manage Data Sources and Data Source Settings
          • Manage Data Source Members
          • Manage Access Requests and Tasks
          • Manage Data Dictionary Descriptions
          • Disable Immuta from Sampling Raw Data
        • Data Source Health Checks Reference Guide
      • Schema Monitoring
        • How-to Guides
          • Run Schema Monitoring and Column Detection Jobs
          • Manage Schema Monitoring
        • Reference Guides
          • Schema Monitoring
          • Schema Projects
        • Why Use Schema Monitoring?
    • Catalogs
      • Getting Started with External Catalogs
      • Configure an External Catalog
      • Reference Guides
        • External Catalogs
        • Custom REST Catalogs
          • Custom REST Catalog Interface Endpoints
    • Tags
      • How-to Guides
        • Create and Manage Tags
        • Add Tags to Data Sources and Projects
      • Tags Reference Guide
  • People
    • Getting Started
    • Identity Managers (IAMs)
      • How-to Guides
        • Microsoft Entra ID
        • Okta LDAP Interface
        • Okta and OpenID Connect
        • Integrate Okta SAML SCIM with Immuta
        • OneLogin with OpenID
        • Configure SAML IAM Protocol
      • Reference Guides
        • Identity Managers
        • SAML Single Logout
        • SAML Protocol Configuration Options
    • Immuta Users
      • How-to Guides
        • Managing Personas and Permissions
        • Manage Attributes and Groups
        • User Impersonation
        • External User ID Mapping
        • External User Info Endpoint
      • Reference Guides
        • Attributes and Groups in Immuta
        • Permissions and Personas
  • Discover Your Data
    • Getting Started
    • Introduction
    • Architecture
    • Data Discovery
      • How-to Guides
        • Enable Sensitive Data Discovery (SDD)
        • Manage Identification Frameworks
        • Manage Patterns
        • Manage Rules
        • Manage SDD on Data Sources
        • Manage Global SDD Settings
        • Migrate From Legacy to Native SDD
      • Reference Guides
        • How Competitive Pattern Analysis Works
        • Built-in Pattern Reference
        • Built-in Discovered Tags Reference
    • Data Classification
      • How-to Guides
        • Activate Classification Frameworks
        • Adjust Identification and Classification Framework Tags
        • How to Use a Built-In Classification Framework with Your Own Tags
      • Built-in Classification Frameworks Reference Guide
  • Detect Your Activity
    • Getting Started
      • Monitor and Secure Sensitive Data Platform Query Activity
        • User Identity Best Practices
        • Integration Architecture
        • Snowflake Roles Best Practices
        • Register Data Sources
        • Automate Entity and Sensitivity Discovery
        • Detect with Discover: Onboarding Guide
        • Using Immuta Detect
      • General Immuta Configuration
        • User Identity Best Practices
        • Integration Architecture
        • Databricks Roles Best Practices
        • Register Data Sources
    • Introduction
    • Audit
      • How-to Guides
        • Export Audit Logs to S3
        • Export Audit Logs to ADLS
        • Run Governance Reports
      • Reference Guides
        • Universal Audit Model (UAM)
        • Snowflake Query Audit Logs
        • Databricks Unity Catalog Audit Logs
        • Databricks Query Audit Logs
        • Starburst (Trino) Query Audit Logs
        • UAM Schema
        • Audit Export CLI
        • Governance Report Types
      • Deprecated Audit Guides
        • Legacy to UAM Migration
        • Download Audit Logs
        • System Audit Logs
    • Detection
      • Use the Detect Dashboards
      • Reference Guides
        • Detect
        • Detect Dashboards
        • Unknown Users in Audit Logs
    • Monitors
      • Manage Monitors and Observations
      • Detect Monitors Reference Guide
  • Secure Your Data
    • Getting Started with Secure
      • Automate Data Access Control Decisions
        • The Two Paths: Orchestrated RBAC and ABAC
        • Managing User Metadata
        • Managing Data Metadata
        • Author Policy
        • Test and Deploy Policy
      • Compliantly Open More Sensitive Data for ML and Analytics
        • Managing User Metadata
        • Managing Data Metadata
        • Author Policy
      • Federated Governance for Data Mesh and Self-Serve Data Access
        • Defining Domains
        • Managing Data Products
        • Managing Data Metadata
        • Apply Federated Governance
        • Discover and Subscribe to Data Products
    • Introduction
      • Scalability and Evolvability
      • Understandability
      • Distributed Stewardship
      • Consistency
      • Availability of Data
    • Authoring Policies in Secure
      • Authoring Policies at Scale
      • Data Engineering with Limited Policy Downtime
      • Subscription Policies
        • How-to Guides
          • Author a Subscription Policy
          • Author an ABAC Subscription Policy
          • Subscription Policies Advanced DSL Guide
          • Author a Restricted Subscription Policy
          • Clone, Activate, or Stage a Global Policy
        • Reference Guides
          • Subscription Policies
          • Subscription Policy Access Types
          • Advanced Use of Special Functions
      • Data Policies
        • Overview
        • How-to Guides
          • Author a Masking Data Policy
          • Author a Minimization Policy
          • Author a Purpose-Based Restriction Policy
          • Author a Restricted Data Policy
          • Author a Row-Level Policy
          • Author a Time-Based Restriction Policy
          • Certifications Exemptions and Diffs
          • External Masking Interface
        • Reference Guides
          • Data Policy Types
          • Masking Policies
          • Row-Level Policies
          • Custom WHERE Clause Functions
          • Data Policy Conflicts and Fallback
          • Custom Data Policy Certifications
          • Orchestrated Masking Policies
    • Domains
      • Getting Started with Domains
      • Domains Reference Guide
    • Projects and Purpose-Based Access Control
      • Projects and Purpose Controls
        • Getting Started
        • How-to Guides
          • Create a Project
          • Create and Manage Purposes
          • Adjust a Policy
          • Project Management
            • Manage Projects and Project Settings
            • Manage Project Data Sources
            • Manage Project Members
        • Reference Guides
          • Projects and Purposes
          • Policy Adjustments
        • Why Use Purposes?
      • Equalized Access
        • Manage Project Equalization
        • Project Equalization Reference Guide
        • Why Use Project Equalization?
      • Masked Joins
        • Enable Masked Joins
        • Why Use Masked Joins?
      • Writing to Projects
        • How-to Guides
          • Create and Manage Snowflake Project Workspaces
          • Create and Manage Databricks Project Workspaces
          • Write Data to the Workspace
        • Reference Guides
          • Project Workspaces
          • Project UDFs (Databricks)
    • Data Consumers
      • Subscribe to a Data Source
      • Query Data
        • Querying Snowflake Data
        • Querying Databricks Data
        • Querying Databricks SQL Data
        • Querying Starburst (Trino) Data
        • Querying Redshift Data
        • Querying Azure Synapse Analytics Data
      • Subscribe to Projects
  • Application Settings
    • How-to Guides
      • App Settings
      • BI Tools
        • BI Tool Configuration Recommendations
        • Power BI Configuration Example
        • Tableau Configuration Example
      • Add a License Key
      • Add ODBC Drivers
      • Manage Encryption Keys
      • System Status Bundle
    • Reference Guides
      • Data Processing, Encryption, and Masking Practices
      • Metadata Ingestion
  • Releases
    • Immuta v2024.2 Release Notes
    • Immuta Release Lifecycle
    • Immuta LTS Changelog
    • Immuta Support Matrix Overview
    • Immuta CLI Release Notes
    • Immuta Image Digests
    • Preview Features
      • Features in Preview
    • Deprecations
  • Developer Guides
    • The Immuta CLI
      • Install and Configure the Immuta CLI
      • Manage Your Immuta Tenant
      • Manage Data Sources
      • Manage Sensitive Data Discovery
        • Manage Sensitive Data Discovery Rules
        • Manage Identification Frameworks
        • Run Sensitive Data Discovery on Data Sources
      • Manage Policies
      • Manage Projects
      • Manage Purposes
    • The Immuta API
      • Integrations API
        • Getting Started
        • How-to Guides
          • Configure an Amazon S3 Integration
          • Configure an Azure Synapse Analytics Integration
          • Configure a Databricks Unity Catalog Integration
          • Configure a Google BigQuery Integration
          • Configure a Redshift Integration
          • Configure a Snowflake Integration
          • Configure a Starburst (Trino) Integration
        • Reference Guides
          • Integrations API Endpoints
          • Integration Configuration Payload
          • Response Schema
          • HTTP Status Codes and Error Messages
      • Immuta V2 API
        • Data Source Payload Attribute Details
        • Data Source Request Payload Examples
        • Create Policies API Examples
        • Create Projects API Examples
        • Create Purposes API Examples
      • Immuta V1 API
        • Authenticate with the API
        • Configure Your Instance of Immuta
          • Get Fingerprint Status
          • Get Job Status
          • Manage Frameworks
          • Manage IAMs
          • Manage Licenses
          • Manage Notifications
          • Manage Sensitive Data Discovery (SDD)
          • Manage Tags
          • Manage Webhooks
          • Search Filters
        • Connect Your Data
          • Create and Manage an Amazon S3 Data Source
          • Create an Azure Synapse Analytics Data Source
          • Create an Azure Blob Storage Data Source
          • Create a Databricks Data Source
          • Create a Presto Data Source
          • Create a Redshift Data Source
          • Create a Snowflake Data Source
          • Create a Starburst (Trino) Data Source
          • Manage the Data Dictionary
        • Manage Data Access
          • Manage Access Requests
          • Manage Data and Subscription Policies
          • Manage Domains
          • Manage Write Policies
            • Write Policies Payloads and Response Schema Reference Guide
          • Policy Handler Objects
          • Search Audit Logs
          • Search Connection Strings
          • Search for Organizations
          • Search Schemas
        • Subscribe to and Manage Data Sources
        • Manage Projects and Purposes
          • Manage Projects
          • Manage Purposes
        • Generate Governance Reports
Powered by GitBook

Other versions

  • SaaS
  • 2024.3

Copyright © 2014-2024 Immuta Inc. All rights reserved.

On this page
  • Column masking
  • Types
  • Cell-level masking
  • Masking circumstances
  • Circumstance descriptions
  • Masking policy support by integration

Was this helpful?

Export as PDF
  1. Secure Your Data
  2. Authoring Policies in Secure
  3. Data Policies
  4. Reference Guides

Masking Policies

PreviousData Policy TypesNextRow-Level Policies

Last updated 10 months ago

Was this helpful?

Masking policies hide values in data, providing various levels of utility while still preserving privacy. Immuta offers and .

Column masking

Column masking policies allow you to hide the data in a column. However, there are several different approaches for masking data that allow you to make tradeoffs between privacy (how far you go with masking) vs utility (how much you want the masked data to be useful to the data consumer).

As with all Immuta policy types, it is recommended that you use when to manage policies at scale. When using global policies, tagging your data with metadata becomes critical and is described in detail in the use case.

Types

  • Categorical Randomized Response: Categorical values are randomized by replacing a value with some non-zero probability. Not all values are randomized, and the consumer of the data is not told which values are randomized and which ones remain unchanged. Values are replaced by selecting a different value uniformly at random from among all other values. If a randomized response policy were applied to a “state” column, a person’s residency could flip from Maryland to Virginia, which would provide ambiguity to the actual state of residency. This policy is appropriate when obscuring sensitive values such as medical diagnosis or survey responses.

  • Custom Function: This function uses SQL functions native to the underlying database to transform the values in a column. This can be used in numerous use cases, but notional examples include top-coding to some upper limit, a custom hash function, and string manipulation.

  • K-Anonymization: Masking through k-anonymization is a distinct policy that can operate over multiple attributes. A k-anonymization policy applies rounding and NULL masking policies over multiple columns so that the columns contain at least “K” records, where K is a positive integer. As a result, attributes will only be disclosed when there is a sufficient number of observations. This policy is appropriate to apply over indirect identifiers, such as zip code, gender, or age. Generally, each of these identifiers is not uniquely linked to an individual, but when combined with other identifiers can be associated with a single person. Applying k-anonymization to these attributes provides the anonymity of crowds so that individual rows are made indistinct from each other, reducing the re-identification risk by making it unclear which record corresponds to a specific person. Immuta requires that you opt in to use this masking policy type. To enable k-anonymization for your account, contact your Immuta representative. Immuta supports k-anonymization of text, numeric, and time-based data types.

  • Mask with Format Preserving Masking: This function masks using a reversible function but does so in a way that the underlying structure of a value is preserved. This means the length and type of a value are maintained. This is appropriate when the masked value should appear in the same format as the underlying value. Examples of this would include social security numbers and credit card numbers where Mask with Format Preserving Masking would return masked values in a format consistent with credit cards or social security numbers, respectively. There is larger overhead with this masking type, and it should really only be used when format is critically valuable, such as situations when an engineer is building an application where downstream systems validate content. In almost all analytical use cases, format should not matter.

  • Mask with Reversibility: This function masks in a way that an authorized user can “unmask” a value and reveal the value to an authorized user. Masking with Reversibility is appropriate when there is a need to obscure a value while allowing an authorized user to recover the underlying value. All of the same use cases and caveats that apply to Replace with Hashing apply to this function. Reversibly masked fields can leak the length of their contents, so it is important to consider whether or not this may be an attack vector for applications involving its use.

  • Randomized Response: This function randomizes the displayed value to make the true value uncertain, but maintains some analytic utility. The randomization is applied differently to both categorical and quantitative values. In both cases, the noise can be increased to enhance privacy or reduced to preserve more analytic value.

  • Datetime and Numeric Randomized Response: Numeric and datetime randomized response apply a tunable, unbiased noise to the nominal value. This noise can obscure the underlying value, but the impact of the noise is reduced in aggregate. This masking type can be applied to sensitive numerical attributes, such as salary, age, or treatment dates.

  • Replace with Constant: This function replaces any value in a column with a specified value. The underlying data will appear to be a constant. This masking carries the same privacy and utility guarantees as Replace with NULL. Apply this policy to strings that require a specific repeated value.

  • Replace with Hashing: This function masks the values with an irreversible hash, which is consistent for the same value throughout the data source, so you can count or track the specific values, but not know the true raw value. This is appropriate for cases where the underlying value is sensitive, but there is a need to segment the population. Such attributes could be addresses, time segments, or countries. It is important to note that hashing is susceptible to inference attacks based on prior knowledge of the population distribution. For example, if “state” is hashed, and the dataset is a sample across the United States, then an adversary could assume that the most frequently occurring hash value is California. As such, it's most secure to use the hashing mask on attributes that are evenly distributed across a population.

  • Replace with Null: This function replaces any value in a column with NULL. This removes any identifiability from the column and removes all utility of the data. Apply this policy to numeric or text attributes that have a high re-identification risk, but little analytic value (names and personal identifiers).

  • Replace with REGEX: This function uses a regular expression to replace all or a portion of an attribute. REGEX replacement allows for some groupings to be maintained, while providing greater ambiguity to the disclosed value. This masking technique is useful when the underlying data has some consistent structure, the remasked underlying data represents some re-identification risk, and a regular expression can be used to mask the underlying data to be less identifiable.

  • Rounding: Immuta’s rounding policy reduces, rounds, or truncates numeric or datetime values to a fixed precision. This policy is appropriate when it is important to maintain analytic value of a quantity, but not at its native precision.

    • Date/Time Rounding: This policy truncates the precision of a datetime value to a user-defined precision. `minute`, `hour`, `day`, `months`, and `year` are the supported precisions.

    • Numeric Rounding: This policy maps the nominal value to the ceiling of some specified bandwidth. Immuta has a recommended bandwidth based on the Freedman-Diaconis rule.

Cell-level masking

For example, a regular masking policy looks like the following:

Mask columns tagged Discovered.Entity.Social Security Number using hashing for everyone except members of group admins

The cells can be conditionally masked by changing the for to a where:

Mask columns tagged Discovered.Entity.Social Security Number using hashing where country_of_residence = 'US' for everyone except members of group admins

That policy will check the country_of_residence column in the table and if the value is US the cell will be masked, otherwise the data will be presented in the clear as usual.

Mask columns tagged Discovered.Entity.Social Security Number using hashing where @columnTagged('country') = 'US' for everyone except members of group admins

This example policy targets the column with the tag country in the policy logic dynamically.

Masking circumstances

The masking functions described above can be implemented in a variety of use cases. Use the table below to determine the circumstance under which a function should be used.

Circumstance descriptions

  • Applicable to Numeric Data: The masking function can be applied to numeric values.

  • Column-Value Determinism: Repeated values in the same column are masked with the same output.

  • Introduces NULLs: The masking function may, under normal or irregular circumstances, return NULL values.

  • Performance: How performant the masking function will be (10/10 being the best).

  • Preserves Appearance: The output masked value resembles the valid column values. For example, a masking function would output phone numbers when given phone numbers. Here, NULL values are not counted against this property.

  • Preserves Averages: The average of the masked values (avg(mask(v))) will be near the average of the values in the clear (avg(v)).

  • Suitable for De-Identification: The masking function can be used to obscure record identifiers, hiding data subject identities and preventing future linking against other identified data.

  • Provides Deniability of Record Content: A (possibly identified) person can plausibly attribute the appearance of the value to the masking function. This is a desirable property of masking functions that retain analytic utility, as such functions must necessarily leak information about the original value. Fields masked with these functions provide strong protections against value inference attacks.

  • Preserves Equality and Grouping: Each value will be masked to the same value consistently without colliding with others. Therefore, equal values remain equal under masking while unequal values remain unequal, preserving equality. This implies that counting statistics are also preserved.

  • Preserves Message Length: The length of the masked value is equal to the length of the original value.

  • Preserves Range Statistics: The number of data values falling in a particular range is preserved. For strings, this can be interpreted as the number of strings falling between any two values by alphabetical order.

  • Preserves Value Locality: The output will remain near the input, which may be important for analytic purposes.

  • Reversible: Qualified individuals can reveal the original input value.

Masking policy support by integration

Masking policy support by integration

Since Global Policies can apply masking policies across multiple different databases at once, if an unsupported masking policy is applied to a column, Immuta will revert to NULLing that column.

Building a cell masking policy is done in the same manner as . The primary difference is when selecting who the policy should apply to, a where clause is injected.

It is recommended that when referencing columns in custom SQL that you not use the physical column name as shown in the example above. Instead use the function. This will allow you to target the policy on any table with a country_of_residence column no matter how that column is spelled on the physical table. For example, you would change the policy to the following example:

See the for an outline of masking policies supported by each integration.

building a regular masking policy
@columnTagged('tag name')
global policies
authoring masking policies
Compliantly open more sensitive data for ML and analytics
column masking
cell-level masking
integration support matrix